SparkListener血缘——Openlineage插件实现思路

2023-10-07 18:20

本文主要是介绍SparkListener血缘——Openlineage插件实现思路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、SparkListener
    • 1.1 源码剖析
    • 1.2 Listener 提供的方法
  • 二、OpenLineage 的SparkListener插件实现
    • 2.1 初始化参数
    • 2.2 类加载信息
    • 2.3 触发执行
    • 2.4 逻辑计划解析
    • 2.5 获取元数据
  • 三、Visitor的具体实现思路(后续)
  • 四、总结


一、SparkListener

1.1 源码剖析

Spark listener主要用于监控Spark应用程序的各项活动,SparkListener可以通过注册到ListenerBus实现事件的监听。只要在启动Spark 时参数加上"spark.extraListeners",spark就会通过Utils.classForName解析并植入我们实现的Listener。

  private def setupAndStartListenerBus(): Unit = {// Use reflection to instantiate listeners specified via `spark.extraListeners`try {val listenerClassNames: Seq[String] =conf.get("spark.extraListeners", "").split(',').map(_.trim).filter(_ != "")for (className <- listenerClassNames) {// Use reflection to find the right constructorval constructors = {val listenerClass = Utils.classForName(className)listenerClass.getConstructors.asInstanceOf[Array[Constructor[_ <: SparkListenerInterface]]]}val constructorTakingSparkConf = constructors.find { c =>c.getParameterTypes.sameElements(Array(classOf[SparkConf]))}lazy val zeroArgumentConstructor = constructors.find { c =>c.getParameterTypes.isEmpty}val listener: SparkListenerInterface = {if (constructorTakingSparkConf.isDefined) {constructorTakingSparkConf.get.newInstance(conf)} else if (zeroArgumentConstructor.isDefined) {zeroArgumentConstructor.get.newInstance()} else {throw new SparkException(s"$className did not have a zero-argument constructor or a" +" single-argument constructor that accepts SparkConf. Note: if the class is" +" defined inside of another Scala class, then its constructors may accept an" +" implicit parameter that references the enclosing class; in this case, you must" +" define the listener as a top-level class in order to prevent this extra" +" parameter from breaking Spark's ability to find a valid constructor.")}}listenerBus.addListener(listener)logInfo(s"Registered listener $className")}} catch {case e: Exception =>try {stop()} finally {throw new SparkException(s"Exception when registering SparkListener", e)}}listenerBus.start()

listenerBus 是所有listern的总线,start方法会启动listenerThread线程,在有事件进入时,会把事件传递给所有已经注册的listener

  /** Post the application start event */private def postApplicationStart() {// Note: this code assumes that the task scheduler has been initialized and has contacted// the cluster manager to get an application ID (in case the cluster manager provides one).listenerBus.post(SparkListenerApplicationStart(appName, Some(applicationId),startTime, sparkUser, applicationAttemptId, schedulerBackend.getDriverLogUrls))}

上述代码事例描述了App启动时,listenerBus 传递event(事件)的过程。post方法会将event先塞入队列,然后listenerThread会循环拿取event,并且根据类型判断应该触发所有已注册监听器的哪个方法。

  protected override def doPostEvent(listener: StreamingListener,event: StreamingListenerEvent): Unit = {event match {case receiverStarted: StreamingListenerReceiverStarted =>listener.onReceiverStarted(receiverStarted)case receiverError: StreamingListenerReceiverError =>listener.onReceiverError(receiverError)case receiverStopped: StreamingListenerReceiverStopped =>listener.onReceiverStopped(receiverStopped)case batchSubmitted: StreamingListenerBatchSubmitted =>listener.onBatchSubmitted(batchSubmitted)case batchStarted: StreamingListenerBatchStarted =>listener.onBatchStarted(batchStarted)case batchCompleted: StreamingListenerBatchCompleted =>listener.onBatchCompleted(batchCompleted)case outputOperationStarted: StreamingListenerOutputOperationStarted =>listener.onOutputOperationStarted(outputOperationStarted)case outputOperationCompleted: StreamingListenerOutputOperationCompleted =>listener.onOutputOperationCompleted(outputOperationCompleted)case _ =>}}

1.2 Listener 提供的方法

@DeveloperApi
abstract class SparkListener extends SparkListenerInterface {override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = { }override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted): Unit = { }override def onTaskStart(taskStart: SparkListenerTaskStart): Unit = { }override def onTaskGettingResult(taskGettingResult: SparkListenerTaskGettingResult): Unit = { }override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = { }override def onJobStart(jobStart: SparkListenerJobStart): Unit = { }override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = { }override def onEnvironmentUpdate(environmentUpdate: SparkListenerEnvironmentUpdate): Unit = { }override def onBlockManagerAdded(blockManagerAdded: SparkListenerBlockManagerAdded): Unit = { }override def onBlockManagerRemoved(blockManagerRemoved: SparkListenerBlockManagerRemoved): Unit = { }override def onUnpersistRDD(unpersistRDD: SparkListenerUnpersistRDD): Unit = { }override def onApplicationStart(applicationStart: SparkListenerApplicationStart): Unit = { }override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = { }override def onExecutorMetricsUpdate(executorMetricsUpdate: SparkListenerExecutorMetricsUpdate): Unit = { }override def onExecutorAdded(executorAdded: SparkListenerExecutorAdded): Unit = { }override def onExecutorRemoved(executorRemoved: SparkListenerExecutorRemoved): Unit = { }override def onBlockUpdated(blockUpdated: SparkListenerBlockUpdated): Unit = { }override def onOtherEvent(event: SparkListenerEvent): Unit = { }
}

二、OpenLineage 的SparkListener插件实现

openlineage相关介绍可以参见我的专栏
Openlineage数据地图

2.1 初始化参数

OpenLineage的Spark监听器实现代码类为io.openlineage.spark.agent.OpenLineageSparkListener,每次在监听器初始化时,都会从Spark Conf 中拿取对应的参数,参数主要包含解析血缘完成后,需要发送的目标信息(比如发送给kafka的server地址或者是http通信的url)

  @Overridepublic void onApplicationStart(SparkListenerApplicationStart applicationStart) {initializeContextFactoryIfNotInitialized();}private void initializeContextFactoryIfNotInitialized() {if (contextFactory != null || isDisabled) {return;}SparkEnv sparkEnv = SparkEnv$.MODULE$.get();if (sparkEnv != null) {try {ArgumentParser args = ArgumentParser.parse(sparkEnv.conf());contextFactory = new ContextFactory(new EventEmitter(args));··· ······ ···// how argument parser workspublic static ArgumentParser parse(SparkConf conf) {ArgumentParserBuilder builder = ArgumentParser.builder();adjustDeprecatedConfigs(conf);conf.setIfMissing(SPARK_CONF_DISABLED_FACETS, DEFAULT_DISABLED_FACETS);conf.setIfMissing(SPARK_CONF_TRANSPORT_TYPE, "http");if (conf.get(SPARK_CONF_TRANSPORT_TYPE).equals("http")) {findSparkConfigKey(conf, SPARK_CONF_HTTP_URL).ifPresent(url -> UrlParser.parseUrl(url).forEach(conf::set));}findSparkConfigKey(conf, SPARK_CONF_APP_NAME).filter(str -> !str.isEmpty()).ifPresent(builder::appName);findSparkConfigKey(conf, SPARK_CONF_NAMESPACE).ifPresent(builder::namespace);findSparkConfigKey(conf, SPARK_CONF_JOB_NAME).ifPresent(builder::jobName);findSparkConfigKey(conf, SPARK_CONF_PARENT_RUN_ID).ifPresent(builder::parentRunId);builder.openLineageYaml(extractOpenlineageConfFromSparkConf(conf));return builder.build();

注意这里的 extractOpenlineageConfFromSparkConf 方法主要是为了将conf解析成可以序列化的openLineageYaml类用于发送,见下述代码

/** Configuration for {@link OpenLineageClient}. */
public class OpenLineageYaml {@Getter@JsonProperty("transport")private TransportConfig transportConfig;@Getter@JsonProperty("facets")private FacetsConfig facetsConfig;
}

2.2 类加载信息

在这里插入图片描述
在listener初始化时,会生成EventEmitter类,该类会对openlineageyaml进行信息解析,生成具体的client通信类,用于发送给元数据地图或者是消息中间件(如kafka)

   this.client =OpenLineageClient.builder().transport(new TransportFactory(argument.getOpenLineageYaml().getTransportConfig()).build()).disableFacets(disabledFacets).build();}

在这里插入图片描述

ContextFactory接收EventEmitter参数,并且根据spark环境识别spark版本(目前Openlineage支持Spark2,3的血缘解析),内部生成对应版本的VisitorFactory。VistoryFactory会根据spark 不同的版本加载访问器。

  static VisitorFactory getInstance() {String version = package$.MODULE$.SPARK_VERSION();try {return (VisitorFactory) Class.forName(getVisitorFactoryForVersion(version)).newInstance();} catch (Exception e) {throw new RuntimeException(String.format("Can't instantiate visitor factory for version: %s", version), e);}}··· ······ ···static String getVisitorFactoryForVersion(String version) {if (version.startsWith("2.")) {return SPARK2_FACTORY_NAME;} else if (version.startsWith("3.2")) {return SPARK32_FACTORY_NAME;} else {return SPARK3_FACTORY_NAME;}}··· ······ ···private static final String SPARK2_FACTORY_NAME ="io.openlineage.spark.agent.lifecycle.Spark2VisitorFactoryImpl";private static final String SPARK3_FACTORY_NAME ="io.openlineage.spark.agent.lifecycle.Spark3VisitorFactoryImpl";private static final String SPARK32_FACTORY_NAME ="io.openlineage.spark.agent.lifecycle.Spark32VisitorFactoryImpl";

同时ContextFactory还负责创建 具体的ExecutionContext(每次触发监听事件都会在Registry的HashMap中更新一个Context),成员变量runEventBuilder(内含handlerFactory)主要用于处理分析Spark逻辑计划。runEventBuilder在初始化时,会注册元数据构造器,以及具体的Input/Output逻辑计划访问器(从handlerFactory中获取先前加载好的对应版本的访问器)。

  public Optional<ExecutionContext> createSparkSQLExecutionContext(SparkListenerSQLExecutionEnd event) {return executionFromCompleteEvent(event).map(queryExecution -> {SparkSession sparkSession = queryExecution.sparkSession();OpenLineageContext olContext =OpenLineageContext.builder().sparkSession(Optional.of(sparkSession)).sparkContext(sparkSession.sparkContext()).openLineage(new OpenLineage(Versions.OPEN_LINEAGE_PRODUCER_URI)).queryExecution(queryExecution).customEnvironmentVariables(this.openLineageEventEmitter.getCustomEnvironmentVariables()).build();OpenLineageRunEventBuilder runEventBuilder =new OpenLineageRunEventBuilder(olContext, handlerFactory);return new SparkSQLExecutionContext(event.executionId(), openLineageEventEmitter, olContext, runEventBuilder);});}

2.3 触发执行

当每次触发Listener的某个方法时,会生成RunEvent(RunEvent就是具体的元数据信息)。
拿 触发 onJobStart 方法举例,会自动初始化上述对象,并且去适配Context用以执行逻辑计划访问器:

  @Overridepublic void onJobStart(SparkListenerJobStart jobStart) {if (isDisabled) {return;}initializeContextFactoryIfNotInitialized();Optional<ActiveJob> activeJob =asJavaOptional(SparkSession.getDefaultSession().map(sparkContextFromSession).orElse(activeSparkContext)).flatMap(ctx ->Optional.ofNullable(ctx.dagScheduler()).map(ds -> ds.jobIdToActiveJob().get(jobStart.jobId()))).flatMap(ScalaConversionUtils::asJavaOptional);Set<Integer> stages =ScalaConversionUtils.fromSeq(jobStart.stageIds()).stream().map(Integer.class::cast).collect(Collectors.toSet());if (sparkVersion.startsWith("3")) {jobMetrics.addJobStages(jobStart.jobId(), stages);}Optional.ofNullable(getSqlExecutionId(jobStart.properties())).map(Optional::of).orElseGet(() ->asJavaOptional(SparkSession.getDefaultSession().map(sparkContextFromSession).orElse(activeSparkContext)).flatMap(ctx ->Optional.ofNullable(ctx.dagScheduler()).map(ds -> ds.jobIdToActiveJob().get(jobStart.jobId())).flatMap(ScalaConversionUtils::asJavaOptional)).map(job -> getSqlExecutionId(job.properties()))).map(Long::parseLong).map(id -> getExecutionContext(jobStart.jobId(), id)).orElseGet(() -> getExecutionContext(jobStart.jobId())).ifPresent(context -> {// set it in the rddExecutionRegistry so jobEnd is calledactiveJob.ifPresent(context::setActiveJob);// startcontext.start(jobStart);});}

context.start方法是解析器的入口(p.s. 如果是监听器的End事件,那就对应context.end),调用runEventBuilder.run执行逻辑计划解析,这里只放入口代码,解析细节会在下小节深入:

  @Overridepublic void start(SparkListenerSQLExecutionStart startEvent) {log.debug("SparkListenerSQLExecutionStart - executionId: {}", startEvent.executionId());if (!olContext.getQueryExecution().isPresent()) {log.info(NO_EXECUTION_INFO, olContext);return;} else if (EventFilterUtils.isDisabled(olContext, startEvent)) {log.info("OpenLineage received Spark event that is configured to be skipped: SparkListenerSQLExecutionStart");return;}RunEvent event =runEventBuilder.buildRun(buildParentFacet(),openLineage.newRunEventBuilder().eventTime(toZonedTime(startEvent.time())),buildJob(olContext.getQueryExecution().get()),startEvent);log.debug("Posting event for start {}: {}", executionId, event);eventEmitter.emit(event);}

2.4 逻辑计划解析

这里主要解释逻辑计划访问器拿取元数据信息的思路,先简略无关的入口代码

    RunEvent event =runEventBuilder.buildRun(buildParentFacet(),openLineage.newRunEventBuilder().eventTime(toZonedTime(startEvent.time())),buildJob(olContext.getQueryExecution().get()),startEvent);
··· ···
··· ···RunEvent buildRun(Optional<ParentRunFacet> parentRunFacet,RunEventBuilder runEventBuilder,JobBuilder jobBuilder,SparkListenerSQLExecutionStart event) {runEventBuilder.eventType(RunEvent.EventType.START);return buildRun(parentRunFacet, runEventBuilder, jobBuilder, event, Optional.empty());}
··· ···
··· ···RunEvent buildRun(Optional<ParentRunFacet> parentRunFacet,RunEventBuilder runEventBuilder,JobBuilder jobBuilder,SparkListenerStageSubmitted event) {Stage stage = stageMap.get(event.stageInfo().stageId());RDD<?> rdd = stage.rdd();List<Object> nodes = new ArrayList<>();nodes.addAll(Arrays.asList(event.stageInfo(), stage));nodes.addAll(Rdds.flattenRDDs(rdd));return populateRun(parentRunFacet, runEventBuilder, jobBuilder, nodes);}

核心代码逻辑在 populateRun中,它负责包装元数据,拿取元数据信息,并且调用先前的RunEventBuilder注册好的访问器进行逻辑计划的解析。仅拿获取逻辑计划中的Input数据集举例,RunEventBuilder在类加载时拿取Visitor(访问器)的逻辑如下:

  @Overridepublic Collection<PartialFunction<LogicalPlan, List<InputDataset>>>createInputDatasetQueryPlanVisitors(OpenLineageContext context) {List<PartialFunction<LogicalPlan, List<InputDataset>>> inputDatasets =visitorFactory.getInputVisitors(context);ImmutableList<PartialFunction<LogicalPlan, List<InputDataset>>> inputDatasetVisitors =ImmutableList.<PartialFunction<LogicalPlan, List<InputDataset>>>builder().addAll(generate(eventHandlerFactories,factory -> factory.createInputDatasetQueryPlanVisitors(context))).addAll(inputDatasets).build();context.getInputDatasetQueryPlanVisitors().addAll(inputDatasetVisitors);return inputDatasetVisitors;}

每次触发监听时,populateRun 会调用handler 中的visitor 收取 Input数据集的逻辑(即map(inputVisitor)):

    Function1<LogicalPlan, Collection<InputDataset>> inputVisitor =visitLogicalPlan(PlanUtils.merge(inputDatasetQueryPlanVisitors));List<InputDataset> datasets =Stream.concat(buildDatasets(nodes, inputDatasetBuilders),openLineageContext.getQueryExecution().map(qe ->fromSeq(qe.optimizedPlan().map(inputVisitor)).stream().flatMap(Collection::stream).map(((Class<InputDataset>) InputDataset.class)::cast)).orElse(Stream.empty())).collect(Collectors.toList());

2.5 获取元数据

populateRun 在获取完所有元数据后,会包装成一个RunEvent

  private RunEvent populateRun(Optional<ParentRunFacet> parentRunFacet,RunEventBuilder runEventBuilder,JobBuilder jobBuilder,List<Object> nodes) {OpenLineage openLineage = openLineageContext.getOpenLineage();RunFacetsBuilder runFacetsBuilder = openLineage.newRunFacetsBuilder();OpenLineage.JobFacetsBuilder jobFacetsBuilder =openLineageContext.getOpenLineage().newJobFacetsBuilder();parentRunFacet.ifPresent(runFacetsBuilder::parent);OpenLineage.JobFacets jobFacets = buildJobFacets(nodes, jobFacetBuilders, jobFacetsBuilder);List<InputDataset> inputDatasets = buildInputDatasets(nodes);List<OutputDataset> outputDatasets = buildOutputDatasets(nodes);··· ······ ···return runEventBuilder.build();

最后调用emit方法,进行runEvent的元信息发送

  public void emit(OpenLineage.RunEvent event) {try {this.client.emit(event);log.debug("Emitting lineage completed successfully: {}", OpenLineageClientUtils.toJson(event));} catch (OpenLineageClientException exception) {log.error("Could not emit lineage w/ exception", exception);}}

在这里插入图片描述
这里报红可以忽略,因为openlineage采用@slf4j注解,代码会在compile后生成


三、Visitor的具体实现思路(后续)

这块留个新坑,Vistor的主要逻辑就是Spark逻辑计划(树)的遍历操作,涉及到的内容会比较复杂,不同的插件遍历思路不一样,所以博主会先从Spark本身如何遍历逻辑计划来作铺垫,后续逐步拓展到每个插件Vistor的实现思路。


四、总结

后续还会介绍的有:Atlas 血缘插件实现思路、Spline血缘插件实现思路、数据血缘Antlr4解析、Atlas-Openlineage-Spline多系统元数据同步。欢迎大家留言评论~

这篇关于SparkListener血缘——Openlineage插件实现思路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/159601

相关文章

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系