因果推断--双重差分法(DID)的原理和实际应用(一)

2023-10-07 17:59

本文主要是介绍因果推断--双重差分法(DID)的原理和实际应用(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、应用场景

二、DID知识介绍

2.1 理论知识介绍

2.2 DID图形化解释

三、应用案例:

3.1 构造对照组

3.2 平行趋势检验

3.3 因果效应评估

四、优缺点总结


一、应用场景

在精细化运营场景中,常常会面临如下问题,不方便或者不允许进行常规的实验设计(AB实验)来考察策略的效果,只能采用全量上线的方式进行,但仍需分析策略的效果,以进行优化和推广。在如下场景中:上线了某付费产品活动,用户可付费开通xx卡,该卡可绑定一名亲友,亲友和自己都能使用该卡进行支付。这种场景很难通过实验的方式进行变量控制,我们不能简单的对某一类用户进行限制,限制其不可进行购买或被绑定,这样对用户体验的伤害很大,也会让用户感到奇怪甚至被歧视。对于这种无法进行实验设计但又必须知道策略是否给业务带来收益的场景,因果推断中的双重差分法就可解决以上问题。

二、DID知识介绍

2.1 理论知识介绍

双重差分法(Differences-in-Differences,DID)主要应用于评价某一事件或政策的影响程度。该方法基于反事实理论框架评估策略发生和不发生两种情况下待解释变量的变化。反事实理论框架是指通过分析策略干预后,实验组待解释变量的变化和假设实验组未被策略干预下,待解释变量变化之间的差异,从而评价策略的影响。策略干预后,实验组待解释变量的变化,我们是可以观测到的,但同一时期内,若实验组未被策略干预,待解释变量呈什么样的数据变化,我们是无法观测到的。于是,我们需要引入对照组,这个对照组的待解释变量随时间的变化趋势等同于实验组待解释变量随时间的变化趋势,才可以用双重差分法进行分析,也就是要满足如下两个假设:

1、个体处理稳定性假设: 实验中每个实验参与单元的行为是相互独立的,独立是指一个用户的行为不受其他用户影响。

2、平行趋势假设:在没有策略干预的情况下,对照组和实验组待解释变量之间的差异不随时间变化。

2.2 DID图形化解释

如下图所示:策略干预前实验组和对照组待解释变量的差异是a_{1},当对实验组施加干预后,实验组和对照组待解释变量的差异变成了a_{1}+a_{3},那么a_{3}即为策略干预效果。

三、应用案例:

在上述应用场景中,该付费产品上线了一段时间后,我们需要评估该活动带来的单量及收益提升情况,辅助进行活动推广和优化。假设在2022年10月的开卡用户共20w,这些用户就是实验组用户,是需要进行评估的对象。根据双重差分法,我们需要构造一个相似的用户群体,让其历史的下单和开卡用户的历史下单满足平行趋势,且这个相似用户群体,历史未曾开通过该卡。如下是DID进行因果效应评估的关键步骤:

3.1 构造对照组

在10月的用户中,按照开卡用户历史下单频次分布进行分层抽样,同样抽取20w未曾开通过该卡的用户作为对照组。

3.2 平行趋势检验

验证实验组(开卡用户)和对照组(抽样用户)的历史单量是否满足平行趋势,我们分别取这些用户在2022年4月至2022年10月的单量进行检验。如果满足平行趋势,我们需考察其在2022年10月以后的单量差异。下图是实验组、对照组用户在2022年10月前后的人均单量趋势:

 从图中可以看出,在2022年10月及以前,构造的虚拟对照组用户的人均单量基本和实验组-开卡用户保持一致,因此满足平行趋势假设,可用双重差分法对策略效果进行评估。

3.3 因果效应评估

从图中可以看出,在2022年10月开卡以后,实验组用户的人均单量较对照组有明显的提升,人均单量提升在0.96-3.11,由此可计算开卡后,实验组用户在每个月的单量提升以及收入的提升情况。

2022年10月之前实验组与对照组人单量差异均值为0.13,10月之后实验组较对照组人均单量提升差异需减去开通之前人均单量差异的均值0.13,下表为开卡后按照DID模型测算的实际人均单量、总单量以及收入的提升情况: 

 由上表可以看出,实验组开卡用户在11月实际人均单量提升为2.98,总量提升为59.6w,收入提升为893.3w,在后续每个月中,实际人均单量差异逐渐缩小到0.83,总单量较对照组提升缩小至16.6w,收入提升为248.5w。

四、优缺点总结

优点:

通过以上案例可以看到,在没有AB实验数据的情况下,如果我们有实验前后的时间序列数据,并能构造一个和实验组待解释变量满足平行趋势的对照组的话,我们就可以用DID进行因果效应评估。使用DID时不需要考虑实验组和对照组之间的差异,在构造虚拟的对照组时,不需要和实验组完全一样,这个操作相对来说较为简单,因果效应的测算过程也较简单

局限性:

首先需要有实验前后的时间序列数据,其次是平行趋势假设,这个是一个很强的假设,我们需要构造一个和实验组用户在待解释指标上满足平行趋势假设的虚拟对照组才能进行接下来的效果评估,而这有时候并不好构造。

这篇关于因果推断--双重差分法(DID)的原理和实际应用(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/159470

相关文章

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维