R实现数据分布特征的视觉化——多笔数据之间的比较

2023-10-07 14:30

本文主要是介绍R实现数据分布特征的视觉化——多笔数据之间的比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      大家好,我是带我去滑雪!

      如果要对两笔数据或者多笔数据的分布情况进行比较,Q-Q图、柱状图、星形图都是非常好的选择,下面开始实战。     

(1)绘制Q-Q图

     首先导入数据bankwage.csv文件,该数据集包含474条数据,变量分别是wage(数值)、wage0(数值)、edu(数值)、gender(字符)、minority(字符)、job(字符):

bankwage=read.csv("bankwage.csv")

     目的:尝试比较员工薪酬上是否存在性别差异。

mwage = subset(bankwage, gender == "Male")$wage_current
fwage = subset(bankwage, gender == "Female")$wage_current
qqplot(mwage, fwage, xlim = range(wage_current), ylim = range(wage_current),  xaxs = "i", yaxs = "i", xlab = "Male workers' wage", ylab = "Female workers' wage")
abline(0, 1)

输出结果:

     通过图像,可以发现薪酬分布倾向男性,说明男性和女性在薪酬上存在性别差异。

(2)绘制柱状图

       数据采用国际上13个交易市场的市价总值数据,目的是比较多个市场市价总值2003年到2008年的差别情况,使用柱状图呈现数据。

load("Cap.RData")
par(mfrow=c(2,1))
barplot(t(Cap)/1e+06, beside = T,las=3,ylab="Capitalization")
title(main = "Major Stock Markets")
mtext(side = 3, "2003 - 2008")
barplot(Cap/1e+06, beside = TRUE,ylab="Capitalization")
par(mfrow=c(1,1))

输出结果:

(3)星形图

       星形图(Star Plot),也称为雷达图(Radar Plot)或蜘蛛图(Spider Plot),是一种用于可视化多维数据的图表类型。它以一个多边形的形式显示了多个变量或特征的值,使您能够比较各个特征之间的相对大小和分布。星形图通常用于展示数据的多维特征,特别适用于在不同类别或维度上比较多个观测值的情况。

palette(rainbow(13, s = 0.6, v = 0.75))
stars(t(log(Cap)), draw.segments = TRUE, ncol = 3, nrow = 2,
      key.loc = c(4.6, -0.5), mar = c(15, 0, 0, 0))
mtext(side = 3, line = 2.2, text = "Growth and Decline of Major Stock Markets",
      cex = 1.5, font = 2)
abline(h = 0.9)

输出结果:

(4)相关性绘图

       分析数值型数据时,变量间的相关性是一项重点,使用corrgram()函数用图形及其组合将相关系数矩阵可视化。可以通过图形色彩、形状等特征轻松地判断相关性是正还是负,甚至相关系数是否显著。

library(corrgram)        
data(auto)
head(auto)
vars_name = setdiff(colnames(auto), c("Model", "Origin"))
low=panel.conf
up=panel.pie
txt=panel.txt
diag=NULL  #or panel.minmax
corrgram(auto[, vars_name],lower.panel=low, upper.panel=up, text.panel=txt,diag.panel=diag, order=TRUE, main="Auto data (PC order)")

输出结果:


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

这篇关于R实现数据分布特征的视觉化——多笔数据之间的比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/158374

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi