等比数列(幂级数)的意义和应用

2023-10-07 09:10

本文主要是介绍等比数列(幂级数)的意义和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://blog.sina.com.cn/s/blog_5701b67c01011u4y.html

等比数列(幂级数)的意义和应用

 

幂级数在理工科分析中有重要意义,其中最重要的即所谓的泰勒级数。但这里讨论其中最简单的幂级数,也就是所谓的“无穷等比数列”。

等比数列(幂级数)的意义和应用                      (1)

对上式的讨论不失一般性。

对于无穷级数,自然首先要讨论的是它的收敛性,而式(1)即是我们熟知的等比数列,只是现在该数列有无穷多项,有限等比数列有求和公式:

等比数列(幂级数)的意义和应用                            (2)

证明上式需要用到数学归纳法

 

等比数列(幂级数)的意义和应用

 

 

∴设等比数列(幂级数)的意义和应用

等比数列(幂级数)的意义和应用

等比数列(幂级数)的意义和应用

得证

显然(2)式的收敛域为:(-1,1),那么在该收敛域内有和函数

等比数列(幂级数)的意义和应用

于是有下面两个重要的级数展开

级数1

等比数列(幂级数)的意义和应用               (3)

其证明如下:

等比数列(幂级数)的意义和应用

对两边进行积分

等比数列(幂级数)的意义和应用             

上式中,因为x=0时,左边等于0,所以C=0。进而

等比数列(幂级数)的意义和应用              

注意(3)式的收敛域,因为把x=1代入时,根据莱布尼茨辨别法,上式右边的级数是收敛的。

得证

级数2

等比数列(幂级数)的意义和应用          (4)

其证明如下:

等比数列(幂级数)的意义和应用

同样对两边积分

等比数列(幂级数)的意义和应用

同样因为x=0时,arctan(0)=0,所以C=0。因此

等比数列(幂级数)的意义和应用

同样把x=±1代入上式右端时,根据莱布尼茨辨别法是收敛的。

得证

这个简单的级数在实际问题中的应用主要是x<<1时,级数可以略去高阶小项,如

等比数列(幂级数)的意义和应用

下面举两个实际例子。

1

因为MOS管沟道夹断时漏电流公式为

等比数列(幂级数)的意义和应用                         (5)

此时继续增大漏源电压VDS,就会引起所谓的“沟道长度调制效应”,既有

L'=L-ΔL,这时上面的公式中的L就要被L'取代,但是由于不知道ΔL具体是多少,所以直接代入意义不大。当认为ΔL<<L,则有

等比数列(幂级数)的意义和应用

代入(5)式,有

等比数列(幂级数)的意义和应用

这里ID0是沟道刚夹断时的漏电流。而λ是一个与工艺有关的参数,那么ΔL/L≈λVDS有什么依据?如下图

等比数列(幂级数)的意义和应用

沟道长度调制效应

当认为VDS1>>VGS-VTH时(图1实际上对VGS-VTH有所夸张),则ΔIDS=IDS1-IDS0VDS1近似成线性关系,因此当通过实测或仿真得到MOS晶体管的输出特性曲线后可以据曲线近似得到λ的值。

2

爱因斯坦的狭义相对论理论中,有著名的质能方程E=mc2,而牛顿理论有动能方程E=(1/2)mv2。由于低速情况下,牛顿理论已经获得巨大的成功。因此新的理论不能否定牛顿理论在低速情况下的正确性,所以当v<<c时,质能方程要与牛顿理论相融洽。

当然质能方程中的质量是动质量,根据相对论有

等比数列(幂级数)的意义和应用         (6)

 

可见当物体低速运动时,能量有两部分:一部分为以静质量形式存在的“固有能量”,另一部分是动能,这部分退化为牛顿动能理论的形式。m0是物体的静质量。上面β=v/c,而在忽略高阶小项时之所以把β4拆开,而忽略(3/4)β4之后的部分在于这样容易开根号,当然还可以任意得选择忽略高阶小项,最后还是得到相同结果,或者干脆只留下m0c2。因为从上面的结果可以看出,速度远小于光速时动能相比与固有能是很小的,但这不是我们讨论的目的。

这篇关于等比数列(幂级数)的意义和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157402

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav