优化算法(寻优问题)\启发式算法

2023-10-07 06:20

本文主要是介绍优化算法(寻优问题)\启发式算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  • 群智能算法(全局最优):模拟退火算法(Simulated annealing,SA),遗传算法(Genetic Algorithm, GA),粒子群算法(Particle Swarm Optimization,PSO)
  • 局部搜索算法(local search algorithm):爬山算法 (Hill Climbing),禁忌算法(Tabu Search,TS)
  • 路径搜索算法:A Search, A* Search,深度优先算法DFS/回溯法(backtracking),广度优先BFS 

在这里插入图片描述

无信息搜索(uniformed search strategies)

  • Breadth-First Search:FIFO queue
  • Uniform-cost search:expands the node n with the lowest path cost,(total cost of a path)
  • Depth-First Search:LIFO(aka. stack)
  • Depth-limited search
  • Iterative deepening DFS:每次加深1层的DFS,IDS does the Goal-test before the child is pushed onto the queue. The goal is found when parent node is expanded.
  • Bidirectional search

启发式搜索 Informed (Heuristic) Search

  • Greedy best-first search:贪心算法,采用启发函数 f(n) = h(n), which is estimated cost of the cheapest path from node n to a goal node
  • A* search (A-star search):采用f(n) = g(n)+h(n),g(n)表示起点到n节点的花费,h(n)表示n节点到目标节点的花费。f(n)=estimated cost of the cheapest solution through n。
  • Recursive best-first search (RBFS):memory-bounded heuristic search
  • Local search:Hill climbing; simulated annealing
  • genetic algorithm: is a stochastic hill-climbing search
  • Online search

搜索策略的评估

  • Completeness: does it always find a solution if one exists?
  • Optimality: does it always find a least‐cost solution?
  • Time complexity: number of nodes generated
  • Space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of 

  • b: maximum branching factor of the search tree
  • d: depth of the optimal solution
  • m: maximum length of any path in the state space (may be  infinite)

模拟退火算法

模拟退火算法(Simulate Anneal,SA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法模拟退火算法是解决TSP问题的有效方法之一。

  • 初始温度 T0、降温系数 Δ(0到1之间)、终止温度 Tk
  • (外层循环)降温过程:每次T乘上Δ,直到 T≤Tk
  • (内层循环)概率选择新解:在温度T时,选择领域解进行判断,优解直接接受,对于劣解,概率接受(T 越大时概率越大,新解和旧解差绝对值越小时概率越小)

过程详解

基本要素和具体意义
基本流程图和伪代码

实际案例 - 背包问题

代码

class SimulatedAnnealing(object):def __init__(self, weight_list, volume_list, value_list, Weight_threshold_value, Volume_threshold_value, satisfying_value, break_T):"""背包物体属性"""self.object_total_number = len(weight_list)self.weight_list = weight_listself.volume_list = volume_listself.value_list = value_listself.Weight_threshold_value = Weight_threshold_valueself.Volume_threshold_value = Volume_threshold_valueself.best_value = -1  # 更新最优值self.cur_total_weight = 0self.cur_total_volume = 0self.cur_total_value = 0self.best_indexs_way = [0] * self.object_total_numberself.current_indexs_way = [0] * self.object_total_number  # best_way 记录全局最优解方案   now_way 记录当前解方案self.weight = self.weight_listself.value = self.value_listself.volume = self.volume_list"""跳出条件"""self.satisfying_value = satisfying_valueself.break_T = break_T"""模拟退火属性"""self.T = 200.0  # 温度self.af = 0.95  # af退火率self.balance = 500  # 平衡次数self.iter_times = 100  # 迭代次数def initialize(self):"""初始化,产生随机解"""while True:for k in range(self.object_total_number):if random.random() < 0.5:self.current_indexs_way[k] = 1else:self.current_indexs_way[k] = 0self.calculate_value(self.current_indexs_way)if self.cur_total_weight < self.Weight_threshold_value and self.cur_total_volume < self.Volume_threshold_value:breakself.best_value = self.calculate_value(self.current_indexs_way)self.copy_list(self.best_indexs_way, self.current_indexs_way)def copy_list(self, a, b):  # 复制函数 把b列表的值赋值a列表for i in range(len(a)):a[i] = b[i]def calculate_value(self, x):"""计算背包的总重量、总体积、总价值"""self.cur_total_weight = 0self.cur_total_volume = 0self.cur_total_value = 0for i in range(self.object_total_number):self.cur_total_weight += x[i] * self.weight[i]  # 当前总重量self.cur_total_volume += x[i] * self.volume[i]  # 当前总体积self.cur_total_value += x[i] * self.value[i]  # 当前总价值return self.cur_total_valuedef get_object(self, x):  # 随机将背包中已经存在的物品取出while True:ob = random.randint(0, self.object_total_number - 1)if x[ob] == 1:x[ob] = 0breakdef put_object(self, x):  # 随机放入背包中不存在的物品while True:ob = random.randint(0, self.object_total_number - 1)if x[ob] == 0:x[ob] = 1breakdef run(self):self.initialize()  # 初始化,产生初始解for i in range(self.iter_times):test_indexs_way = [0] * self.object_total_numbernow_total_value = 0  # 当前背包价值for i in range(self.balance):now_total_value = self.calculate_value(self.current_indexs_way)self.copy_list(test_indexs_way, self.current_indexs_way)ob = random.randint(0, self.object_total_number - 1)  # 随机选取某个物品if test_indexs_way[ob] == 1:  # 如果物品在背包中self.put_object(test_indexs_way)  # 随机放入背包中不存在的物品test_indexs_way[ob] = 0  # 在背包中则将其拿出,并加入其它物品else:  # 不在背包中则直接加入或替换掉已在背包中的物品if random.random() < 0.5:test_indexs_way[ob] = 1else:self.get_object(test_indexs_way)test_indexs_way[ob] = 1temp_total_value = self.calculate_value(test_indexs_way)if self.cur_total_weight > self.Weight_threshold_value or self.cur_total_volume > self.Volume_threshold_value:continue  # 非法解则跳过if temp_total_value > self.best_value:  # 如果新的解更好,更新全局最优self.best_value = temp_total_valueself.copy_list(self.best_indexs_way, test_indexs_way)if temp_total_value > now_total_value:  # 如果新的解比当前解更好,直接接受新解self.copy_list(self.current_indexs_way, test_indexs_way)else:g = 1.0 * (temp_total_value - now_total_value) / self.Tif random.random() < math.exp(g):  # 概率接受劣解self.copy_list(self.current_indexs_way, test_indexs_way)self.T = self.T * self.af  # 温度下降"""跳出条件, 达到满意的解或者温度直接跳出"""if self.best_value > self.satisfying_value or self.T < self.break_T:break# 方案转为索引的形式best_object_number = []for i in range(object_total_number):if self.best_indexs_way[i]:best_object_number.append(i)print(f"最好的选择方案是取第best_object_number:{best_object_number}个物品,total_value:{self.best_value}")
import random, math
object_total_number=9
weight_list = random.sample(range(1, 100), object_total_number)
volume_list = random.sample(range(1, 100), object_total_number)
value_list = random.sample(range(1, 1000), object_total_number)
Weight_threshold_value = sum(weight_list) / 2  # 取总和值的一半算了?直接不用改动了
Volume_threshold_value = sum(volume_list) / 2print(f"Weight_threshold_value:{Weight_threshold_value}")
print(f"Volume_threshold_value:{Volume_threshold_value}")
print(f"weight_list:{weight_list}")
print(f"volume_list:{volume_list}")
print(f"value_list:{value_list}")satisfying_value = 999999  # 设置满意解,达到就直接退出了
break_T = 1  # 设置跳出温度
SimulatedAnnealing_obj = SimulatedAnnealing(weight_list=weight_list, volume_list=volume_list, value_list=value_list,Weight_threshold_value=Weight_threshold_value,Volume_threshold_value=Volume_threshold_value,satisfying_value=satisfying_value, break_T=break_T)
SimulatedAnnealing_obj.run()

输出结果:

Weight_threshold_value:258.0
Volume_threshold_value:228.0
weight_list:[53, 71, 16, 66, 74, 75, 55, 18, 88]
volume_list:[46, 41, 31, 15, 21, 47, 78, 89, 88]
value_list:[732, 886, 98, 889, 128, 966, 355, 140, 491]
最好的选择方案是取第best_object_number:[1, 2, 3, 5, 7]个物品,total_value:2979

A(A*) 寻路算法

狄克斯特拉算法求最短路径时只根据起点到候补顶点的距离来决定下一个顶点。

A算法是启发式算法重要的一种,主要是用于在两点之间选择一个最优路径,而A的实现也是通过一个估值函数: F=G+H

  • G表示该点到起始点位所需要的代价
  • H表示该点到终点的曼哈顿距离。
  • F就是G和H的总和,而最优路径也就是选择最小的F值,进行下一步移动
  • Open list 里的格子是路径可能会是沿途经过的,也有可能不经过。基本上 open list 是一个待检查的方格列表。
  • 从 open list 中移除,加入到 close list 中, close list 中的每个方格都是现在不需要再关注的
  • 父节点(parent): 在路径规划中用于回溯的节点
  • 计算G值时,在场景中横向或纵向移动消耗10,对角移动消耗14。
  • 估算 H 值使用 Manhattan 方法,计算从当前方格横向或纵向移动到达目标所经过的方格数,忽略对角移动。
  • 路径是这么产生的:反复遍历 open list ,选择 F 值最小的方格。

  • 如果不设置启发函数,则 A* 就是 Dijkstra 算法,这时可以找到最短路径。
  • 如果启发函数 H(n) 的值一定小于等于 n 到终点的实际距离,则 A* 可以保证找到最短路径。
  • 如果 H(n) 的值等于 n 到终点的实际距离,则 A* 会直接找到最短路径,而不用扩展搜索额外的节点,此时运行是最快的。
  • 如果 H(n) 的值有可能大于 n 到终点的实际距离,则 A* 算法不一定可以找到最短路径,但是运行速度会比较快。
  • A* is optimal if h(n) is an admissible heuristic —— that is, provided that h(n) never overestimates the cost to reach the goal.
  • A* is optimal if heuristic is admissible (and non‐negative)  for tree-search
  • A* optimal if heuristic is consistent  for graph-search

对于A*算法来说,评判函数也是f(n)=g∗(n)+h∗(n) 这个,只不过加了约束条件,g∗(n)>0,h*(n)<=任意h(n); 以上只不过是定义,对于一个实例来说,h(n)由很多种,h(n)只是估值函数的一个集合,有各种方法h1(n)h2(n) h3(n)…,取其中任意一个方法带入上述公式,组成评判函数,都是A算法的实现,现在取从集合中一个函数h*(n),使得它比集合中任意的函数都优秀,这样的算法叫A*算法。 也就是A*算法是最优的A算法。(因为估值函数最优)。

References

A*算法详解(个人认为最透彻的一个)_inCorning的博客-CSDN博客

这篇关于优化算法(寻优问题)\启发式算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/156619

相关文章

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.