火山引擎 ByteHouse:TB 级数据下,如何实现高效、稳定的数据导入

2023-10-05 20:36

本文主要是介绍火山引擎 ByteHouse:TB 级数据下,如何实现高效、稳定的数据导入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群

近期,火山引擎开发者社区、火山引擎数智平台(VeDI)联合举办以《数智化转型背景下的火山引擎大数据技术揭秘》为主题的线下 Meeup。活动主要从数据分析、数据治理、研发提效等角度,带领数据领域从业者全面了解数智化转型背景下的火山引擎数据飞轮模式在数据资产建设上的技术与实践。其中,火山引擎 ByteHouse 产品专家受邀到现场,发表主题为《基于 ByteHouse 引擎的增强型数据导入技术实践》的分享。

数据导入是衡量 OLAP 引擎性能及易用性的重要标准之一,高效的数据导入能力能够加速数据实时处理和分析的效率。作为一款 OLAP 引擎,火山引擎云原生数据仓库 ByteHouse 源于开源 ClickHouse,在字节跳动多年打磨下,提供更丰富的能力和更强性能,能为用户带来极速分析体验,支撑实时数据分析和海量离线数据分析,具备便捷的弹性扩缩容能力,极致的分析性能和丰富的企业级特性。

随着 ByteHouse 内外部用户规模不断扩大, 越来越多用户对数据导入提出更高的要求,这也为 ByteHouse 的数据导入能力带来了更大的挑战。

从字节跳动内部来看,ByteHouse 主要以 Kafka 为实时导入的主要数据源。对于大部分内部用户而言,其数据体量偏大,用户更看重数据导入的性能、服务的稳定性以及导入能力的可扩展性。在数据延时性方面,用户的需求一般为秒级左右。

据火山引擎 ByteHouse 产品专家的介绍,基于以上场景和需求,ByteHouse 首先基于 ClickHouse 引擎进行升级,其次又针对数据导入能力进行一系列定制性优化,主要包括两个方面,第一为 MaterializedMySQL 增强;第二个是 HaKafka 引擎。

在引擎优化方面,在 TB 级数据量级下,ClickHouse 容易出现集群故障,还存在读性能较低、耗损内存的问题。针对这些痛点,ByteHouse 自研的 HaMergeTree 和 HaUniqueMergeTree 可以降低负载,确保集群在单节点故障下能平稳运行服务,还能平衡读写性能,保障读取时性能一致。

在数据导入能力的定制化优化方面,社区版 MaterializedMySQL 不支持分布式表等功能,也存在无法定位问题、无法同步状态等运维问题。一方面,通过构建分布式模式的 MaterializedMySQL 库,用户可将每个表都对应同步至 ByteHouse 的一个分布式表,让数据不重复存储,充分利用分布式集群的计算能力,又降低了对源端的同步压力。另一方面,ByteHouse 也提供可视化运维的功能,支持同步状态和任务管理,一旦出现系统运维故障,用户会收到异常警告。

而 HaKafka 引擎则是 ByteHouse 推出的一种特殊的表引擎,主要基于 ClickHouse 社区的 Kafka engine 进行了优化。用户可以通过一个 Kafka 消费表、分布式存储表、物化视图表,三元组实现数据消费、数据转换、数据写入功能。

目前,以上能力已经在短视频、营销实时数据监控、游戏广告数据分析等领域落地。以营销实时数据监控为例,活动的主办方需要对营销活动效果进行实时监控,以便通过实时奖励发放来动态调整奖励流量分配,提升 ROI 收益。这类场景要求数据实时写入,对系统性能具备高要求 。另外,为保障奖励不会发放错误,也需要保证数据在传输和落盘时都不丢失、不重复,且稳定运行。

ByteHouse 基于自研 HaKafka 引擎,能支持流式数据实时入库, 用自研事务保障机制,确保数据精准一次传输,最后通过自研 Unique 引擎实现数据实时写入实时去重。在效果上实现实时写入、实时分析 30MB/s/node,业务可以根据不同用户群实时发放奖励,做到秒级延迟、秒级监控。

这篇关于火山引擎 ByteHouse:TB 级数据下,如何实现高效、稳定的数据导入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/151999

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis