zkVM设计性能分析

2023-10-05 19:06
文章标签 分析 设计 性能 zkvm

本文主要是介绍zkVM设计性能分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

本文主要参考:

  • 2023年9月ZKSummit10 Wei Dai @1k(x) & Terry Chung @1k(x)分享视频 ZK10: Analysis of zkVM Designs - Wei Dai & Terry Chung

当前有各种zkVM,其设计思想各有不同,且各有取舍,本文重点对现有各zkVM设计进行分析。
zkVMs寒武纪大爆发:
在这里插入图片描述

  • 2020年之前的zkVM方案均是学术性的,不具备实用性,具体有:
    • TinyRAM(2013年)
    • vnTinyRAM
    • Buffet
    • Geppetto
    • Spice等
  • 2021年之后开始有商业化的zkVM方案,特别是近两年来各种zkVM方案开始大爆发,有:
    • Cairo-VM
    • Risc-Zero
    • zkSyncVM
    • polygon zkEVM
    • Scroll zkEVM
    • Delphinus zkWasm
    • Valida
    • Triton VM
    • powdr risc-v
    • Fluent zkWasm
    • Jolt
    • polygon Miden等

本文内容框架为:

  • 何为zkVMs?为何需要zkVMs?
  • zkVM设计性能分析:
    • ISA性能分析
    • Arithmetization性能分析
    • Proof system性能分析
  • 结论及开放性问题

2. 何为zkVMs?为何需要zkVMs?

2.1 为何需要zkVMs?

zk Circuits vs. zkVMs:
在这里插入图片描述

  • 编程语言:zk Circuits通常采用Circom、HDL等面向领域编程语言编写;而zkVMs采用Rust、WASM、Risc-V、LLVM等高级通用语言编写。
  • 易用性及生态:难于用zk Circuits来表达具有很多分支的复杂逻辑;而zkVMs的程序有大量现有可靠的软件。
  • 性能:zk Circuits性能较高,因其对特定计算的约束进行了手动调优;而zkVMs性能要慢约10~100倍。本文重点关注的是如何提升zkVMs的性能。

2.2 何为VMs?

虚拟机采用指令集架构(Instruction set architecture,ISA),即:

  • 具有固定语义的一组有限数量的指令集。

在这里插入图片描述

虚拟机(Virtual Machine,VM)的主要结构有:

  • 程序:由指令序列组成。虚拟机每次仅读取程序中的一条指令。
  • 内存
  • 虚拟机:主要工作为:
    • 1)读取输入
    • 2)对内存(RAM)读写
    • 3)修改本地机器状态:内部机器状态为:Stack和(或)Registers。
    • 4)写输出
    • 5)中止执行

现有的VM/zkVM架构,以及内部机器状态内存模型,选型情况为:
在这里插入图片描述

2.2.1 VM选择——Harvard架构 vs. Von Neumann架构

前序博客见:

  • 哈佛架构 VS 冯·诺依曼架构

在做zkVM设计时,对应虚拟机(VM)架构通常需考虑在哈佛架构 和 冯·诺依曼架构 之间二选一:

  • 哈佛架构:程序和内存分属不同区域。
    • 优点为:
      • 无program loader
      • 仅lookup table需要额外的cycles。
    • 缺点为:
      • 无JIT
      • per program setup(需对每个程序做setup)
  • 冯·诺依曼架构:程序在内存中。
    • 优点为:
      • 通用,更接近现代CPUs
    • 缺点为:
      • 必须约束所取指令的正确性
      • 需要program loader(来将程序加载到内存中), 意味着需要更多cycles

在这里插入图片描述

2.2.2 VM内部机器状态内存模型选择——Stack, Register, vs. Direct Memory

虚拟机内部机器状态内存模型,通常有3种选择:

  • 1)Stack Machine:通过访问stack top来进行数据移动,指令更简单。如:
    • EVM
    • Miden-asm
    • Wasm
  • 2)Register Machine:指令比Stack Machine要短,但更复杂,不过数据移动操作要少的多。如:
    • RISC-V
  • 3)Direct Memory Machine:无需数据移动(zero data movement),但有更多的读写操作。如:
    • LLVM-IR
      在这里插入图片描述
      在这里插入图片描述
      三种虚拟机内部机器状态内存模型的性能对比为:
      在这里插入图片描述

2.3 何为zkVMs?

zkVM的目的在于:

  • 给定初始程序、初始程序输入、初始内部机器状态,证明以上VM的有效执行。

zkVMs主要分为四大阶段:

  • 1)Setup阶段:根据参数(如最大trace行数、固定列数、哈希函数等),获得Proving key和Verification key。

  • 2)生成Witness阶段:(Executor)根据程序和程序输入,生成execution trace(即witnesses)。该execution trace中包含了:

    • 该程序的执行
    • 以及,帮助约束该执行有效性的额外信息。

    在生成Witness阶段,还包括将程序切分以供后续并行证明的工作。

  • 3)Proving阶段:根据execution trace和Proving key,生成proof。

  • 4)Verification阶段:根据proof和Verification key,生成验证是否通过的结果Y/N。

在这里插入图片描述

3. zkVM设计性能分析

传统虚拟机中,其效率分析的核心思想为:

  • VM效率 约等于 (程序中的指令数 x 执行单条指令用时) ,即:
    T ≈ P中指令数  × time instruction T\approx \text{P中指令数 }\times \frac{\text{time}}{\text{instruction}} TP中指令数 ×instructiontime

当使用zkVM证明某固定、抽象程序P时,借鉴相同的思想:

  • zkVM效率 约等于 (程序中的指令数 x 单条指令的约束复杂度 x 单个约束证明用时) ,即:zkVM证明用时 T T T以如下公式来表示:
    T ≈ P中指令数  × time instruction ≈ P中指令数  × "Constraint complexity" instruction × time "Constraint complexity" \begin{aligned}T &\approx \text{P中指令数 }\times \frac{\text{time}}{\text{instruction}} \\ &\approx\text{P中指令数 }\times \frac{\text{"Constraint complexity"}}{\text{instruction}} \times \frac{\text{time}}{\text{"Constraint complexity"}}\end{aligned} TP中指令数 ×instructiontimeP中指令数 ×instruction"Constraint complexity"×"Constraint complexity"time

其中的“约束”为:

  • 衡量某类proof system复杂度的单位。

取决于所采用的proof system类型,具体的“约束复杂度”是指,如:

  • R1CS约束数
  • 具有固定配置的Plonk电路中的cells数
  • 具有固定depth的GKR电路中的wires数

为此,在对zkVM做性能分析时,将“(程序中的指令数 x 单条指令的约束复杂度 x 单个约束证明用时)”拆分成3个维度来分析,其中:

  • 1)程序中的指令数:对应为ISA(Instruction set architecture)性能分析。
  • 2)单条指令的约束复杂度:对应为Arithmetization性能分析。
  • 3)单个约束证明用时:对应为Proof system性能分析。
    在这里插入图片描述

3.1 ISA性能分析

ISA(Instruction set architecture)性能分析,主要关注的是程序中的指令数。
传统ISA和“ZK ISA”是针对不同的场景进行了优化:

  • 传统ISA为:

    • 内存局限性:处理器具有内存上限。
    • 程序size(如压缩):无法有太多通用寄存器。
    • 执行速度
  • "ZK ISA"为:

    • 每个cycle,一条指令:具有指令上限。
    • 指令大小的影响小:指令可包含更多信息,如引用更多寄存器或本地变量。
    • 证明速度或性能。

在这里插入图片描述
以,在软件中实现SHA256 one-round压缩函数 所需的指令数,为例,不同虚拟机对比情况为:
在这里插入图片描述
其中:

  • 前三种(EVM、Miden-asm、Wasm)为stack machine,具有相对更多的local data movement操作。
  • RISC-V为register machine,具有少得多的local data movement操作。
  • LLVM-IR为direct memory模式,具有虚拟寄存器,从而具有zero data movement。

在这里插入图片描述
在这里插入图片描述
由此可知,实际的ISA性能,取决于所采用的机器内部状态内存模型:

  • 1)Stack machines:具有大量stack操作(数据移动操作)(高达50%~60%)。
  • 2)Register machines:
    • 当寄存器压力低时,其性能好。
    • 当寄存器压力高时(~30%),需要大量的数据移动。
  • 3)Direct memory machines:
    • 消除了local data movement,即无需数据移动。
    • Caveat(警告):可能会导致更复杂的arithmetization?
      在这里插入图片描述

3.2 Arithmetization性能分析

Arithmetization性能分析,关注的是:

  • 单条指令的约束复杂度。

在这里插入图片描述
实际在对Arithmetization性能分析时,主要分为2大块:

  • Segment性能分析
  • “Recursion复杂度”+“Continuation复杂度” 性能分析。

3.2.1 Segment性能分析

算术化是指将对程序执行segment的约束,转换为:

  • Permutation check、
  • Gate check、
  • lookup、
  • Copy check

等组合,然后进一步转换为2大类子约束表达:

  • Zero check
  • Product check

取决于具体所采用的PolyIOP方案,后续的方案以及影响性能的关键运算也有所不同:

  • 单变量PolyIOP:相关方案有Plonk、STARK、Plookup等,对应为Quotient check,影响性能的关键运算为FFT。
  • 多变量PolyIOP:相关方案有GKR、HyperPlonk、Jolt/Lasso、ProtoStar等,对应为Sum check,影响性能的关键运算为MLE。
    在这里插入图片描述

在这里插入图片描述
以基于STARK的zkVM为例,将程序正确执行的execution trace切分为多个segment。其Prover的证明用时由:

  • 派生多项式,以及对多项式进行承诺

所主导。根据RISC0、Triton、Plonky2所提供的数据:

  • 经典的STARK Provers有60%~80%的证明时长用于派生和commit多项式。
3.2.1.1 STARK VMs vs. SNARK VMs

在这里插入图片描述
当前基于STARK方案的zkVM有:

  • Risc0
  • Miden
  • Cairo
  • Valida
  • Nock
  • TritonVM
  • zkSync VM
  • Polygon zkEVM

这些STARK zkVMs的性能分析对比情况为:【关键数据见最后2列】
在这里插入图片描述
现有的基于SNARK方案的zkVMs,采用的都是基于Halo2的方案,具体有:

  • zkWasm
  • Powdr的Risc-v
  • Scroll的zkEVM

这些SNARK zkVMs性能对比为:
在这里插入图片描述

3.2.2.2 segment性能提升措施

为提升Arithmetization segment性能,其目标应为:

  • 尽可能使,单个指令的committed cells,数量最少。

具体措施有:

  • 1)移除重复的cells。仅对每个指令的“state change”进行commit。
    • 对“non-local” 数据/计算,采用permutation/lookups。
    • powdr risc-v中的寄存器(编码在列中),占约50%的列。
  • 2)采用表达性更好的IOP arguments:
    • fixed lookup tables可改进bitwise运算性能。
    • 改进关键IOP原语的性能,如在单个table中查找 M M M个列集合,采用更好的lookup argument会具有更好的性能:
      在这里插入图片描述
  • 3)具有“flexible area”的co-processors,有助于改进单个指令开销。

在这里插入图片描述

3.2.2“Recursion复杂度”和“Continuation复杂度” 性能分析

在这里插入图片描述
当将1个完整的execution trace切分为 t t t个segment时,总的复杂度为:

  • 证明所有 t t t个(具有 n n n-step)segments复杂度
  • 证明所有 t − 1 t-1 t1个 recursive proofs的复杂度

相应的关键路径为:

  • 1个segment proof
  • log ⁡ ( t ) \log(t) log(t)个recursive proofs

在这里插入图片描述
如Risc0中,有多达50%的开销用于对“continuation” state进行序列化。

对比SNARKs(Plonk)、Folding/Accumulation、STARKs等方案的recursion threshold开销为:
在这里插入图片描述
在这里插入图片描述

3.3 Proof system性能分析

Proof system性能分析,关注的是:

  • 单个约束证明用时。

对于多项式承诺方案(PCS,Polynomial Commitment Scheme),基于FRI的PCS性能要由于基于MSM的多项式承诺方案性能:【其中y轴表示的是每秒承诺的域元素数】
在这里插入图片描述
在这里插入图片描述

4. 结论及开放性问题

关于ISA的开放性问题有:

  • 如何将现有工具应用到zk-efficient ISA中?
  • 可进一步消除data movement么?如对memcpy进行direct argument?

关于Arithmetization的开放性问题有:

  • 降低单个指令的复杂度
  • 降低递归(recursion)复杂度
    • “doubly-fast”哈希函数(如Poseidon2、Tip5、XHash{8,12}、Monolith等)
  • 降低"continuation"复杂度

关于proof system/PCS的开放性问题有:

  • FFT、MLE、PCS应封装为库,项目方可受益于这些原语的更好实现。
  • 更好的bench工具,来对比各个方案的性能。

在这里插入图片描述

参考资料

[1] 2023年9月ZKSummit10 Wei Dai @1k(x) & Terry Chung @1k(x)分享视频ZK10: Analysis of zkVM Designs - Wei Dai & Terry Chung【1k(x)为早期密码学投资基金】

这篇关于zkVM设计性能分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/151871

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6