python笔记:pandas/geopandas DataFrame逐行遍历

2023-10-05 17:04

本文主要是介绍python笔记:pandas/geopandas DataFrame逐行遍历,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Pandas和GeoPandas中,可以使用几种不同的方法来遍历DataFrame的每一行

0 数据

import pandas as pddata = {'column1': range(1, 1001),'column2': range(1001, 2001)
}
df = pd.DataFrame(data)
df

 

1 iterrows

for index, row in df.iterrows():print(index)print(row)
'''
0
column1       1
column2    1001
Name: 0, dtype: int64
1
column1       2
column2    1002
Name: 1, dtype: int64
2
column1       3
column2    1003
Name: 2, dtype: int64
3
column1       4
column2    1004
Name: 3, dtype: int64
...
'''
  • 优点:简单直观,可以同时获取行索引和数据。
  • 缺点:比其他方法慢,尤其是在大数据集上,因为它逐行遍历。

2 itertuples

for row in df.itertuples():print(row)print(row.Index) print(row.column1)print(row.column2)
'''
Pandas(Index=0, column1=1, column2=1001)
0
1
1001
Pandas(Index=1, column1=2, column2=1002)
1
2
1002
Pandas(Index=2, column1=3, column2=1003)
2
3
1003
...
'''
  • 优点:比 iterrows() 快,因为它返回命名元组,遍历的是元组而不是Series对象。
  • 缺点:仍然比向量化操作慢,稍微复杂一点。

3 apply

def process_row(row):print(row)df.apply(process_row, axis=1)
'''
column1       1
column2    1001
Name: 0, dtype: int64
column1       2
column2    1002
Name: 1, dtype: int64
column1       3
column2    1003
Name: 2, dtype: int64
...
'''
  • 优点:可以方便地应用一个函数到每一行或每一列。
  • 缺点:比 itertuples() 慢,而且在使用上可能比直接遍历更复杂一些。

4 applymap

def process_row(element):print(element)df.applymap(process_row)
'''
1
2
3
4
5
6
7
8
9
10
...
'''
  • 优点:可以方便地应用一个函数到DataFrame的每个元素。
  • 缺点:可能不如其他方法高效,尤其是在大数据集上。

5 逐元素at

for i in range(len(df)):print(df.at[i,'column1'],df.at[i,'column2'])
'''
1 1001
2 1002
3 1003
4 1004
5 1005
...
'''

6 使用timeit 分别计算运行时间

python 笔记: timeit (测量代码运行时间)-CSDN博客zhiguan

import timeit
def row_at(df):for i in range(len(df)):df.at[i,'column1']df.at[i,'column2']def iter_row(df):for index,row in df.iterrows():indexrowdef iter_tuple(df):for row in df.itertuples():rowdef apply_df(df):df.apply(lambda x:x,axis=1)def apply_map_df(df):df.applymap(lambda x:x)time_at=timeit.timeit("row_at(df)", globals=globals(),number=1000)
time_iterrow=timeit.timeit('iter_row(df)',globals=globals(),number=1000)
time_itertuple=timeit.timeit('iter_tuple(df)',globals=globals(),number=1000)
time_apply=timeit.timeit('apply_df(df)',globals=globals(),number=1000)
time_applymap=timeit.timeit('apply_map_df(df)',globals=globals(),number=1000)time_at,time_iterrow,time_itertuple,time_apply,time_applymap
'''
(4.100567077999585,14.672198772001138,0.37428459300281247,12.572721185002592,0.5845120449957903)
'''

直观可视化 

import seaborn as sns
import matplotlib.pyplot as pltx = ['at by row','iterrows','itertuples','apply','applymap']
y = [time_at,time_iterrow,time_itertuple,time_apply,time_applymap]  # 请将这些值替换为你实际的时间数据sns.barplot(x=x, y=y)
# 创建 barplotfor i, val in enumerate(y):plt.text(i, val + 0.01, round(val, 2), ha='center')
# 添加标签(x轴、y轴、text的label)# 显示图形
plt.show()

这篇关于python笔记:pandas/geopandas DataFrame逐行遍历的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/151642

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear