AcWing 288. 休息时间,《算法竞赛进阶指南》

2023-10-05 14:04

本文主要是介绍AcWing 288. 休息时间,《算法竞赛进阶指南》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

288. 休息时间 - AcWing题库

在某个星球上,一天由 N 个小时构成,我们称 0 点到 1 点为第 1 个小时、1 点到 2 点为第 2 个小时,以此类推。

在第 i 个小时睡觉能够恢复 Ui 点体力。

在这个星球上住着一头牛,它每天要休息 B 个小时。

它休息的这 B 个小时不一定连续,可以分成若干段,但是在每段的第一个小时,它需要从清醒逐渐入睡,不能恢复体力,从下一个小时开始才能睡着。

为了身体健康,这头牛希望遵循生物钟,每天采用相同的睡觉计划。

另外,因为时间是连续的,即每一天的第 N 个小时和下一天的第 1 个小时是相连的(N 点等于 0 点),这头牛只需要在每 N 个小时内休息够 B 个小时就可以了。

请你帮忙给这头牛安排一个睡觉计划,使它每天恢复的体力最多。

输入格式

第 1 行输入两个空格隔开的整数 N 和 B。

第 2..N+1行,第 i+1行包含一个整数 Ui。

输出格式

输出一个整数,表示恢复的体力值。

数据范围

3≤N≤3830
2≤B<N
0≤Ui≤200000

输入样例:
5 3
2
0
3
1
4
输出样例:
6
样例解释

这头牛每天 3 点入睡,睡到次日 1 点,即[1,4,2] 时间段休息,每天恢复体力值最大,为 0+4+2=6。

解析:

DP的核心思想是用集合来表示一类方案,然后从集合的维度来考虑状态之间的递推关系

这里可以将集合划分为第 i 个小时睡与不睡

具体为:f[i][j][1] 表示前 i 个小时睡了 j 个小时,1 表示第 i 个小时睡了,0 表示第i个小时没睡

则 f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1])

f[i][j][1]=max(f[i-1][j-1][0],f[i-1][j-1][1]+w[i])

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
const int N = 4e3, INF = 0x3f3f3f3f;
int n, m;
int w[N];
int f[2][N][2];int main() {scanf("%d%d", &n, &m);for (int i = 1; i <= n; i++) {scanf("%d", &w[i]);}memset(f, -0x3f, sizeof(f));f[1][0][0] = f[1][1][1] = 0;for (int i = 2; i <= n; i++) {for (int j = 0; j <= m; j++) {f[i & 1][j][0] = max(f[i - 1 & 1][j][0], f[i - 1 & 1][j][1]);f[i & 1][j][1] = -INF;if (j)f[i & 1][j][1] = max(f[i - 1 & 1][j - 1][0], f[i - 1 & 1][j - 1][1] + w[i]);}}int ret = f[n & 1][m][0];memset(f, -0x3f, sizeof(f));f[1][0][0] = 0, f[1][1][1] = w[1];for (int i = 2; i <= n; i++) {for (int j = 0; j <= m; j++) {f[i & 1][j][0] = max(f[i - 1 & 1][j][0], f[i - 1 & 1][j][1]);f[i & 1][j][1] = -INF;if (j)f[i & 1][j][1] = max(f[i - 1 & 1][j - 1][0], f[i - 1 & 1][j - 1][1] + w[i]);}}ret = max(ret, f[n & 1][m][1]);cout << ret << endl;return 0;
}

这篇关于AcWing 288. 休息时间,《算法竞赛进阶指南》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/151343

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费