Python实现数据清洗的18种方法

2025-01-19 04:50

本文主要是介绍Python实现数据清洗的18种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学...

数据清洗可能是你们遇到的第一个大挑战,但别担心,python的魔力在于能用简洁的代码解决复杂问题。今天,我们就来学习如何用一行代码完成数据清洗的十八个小绝招。准备好,让我们一起化繁为简,成为数据清洗的高手!

1. 去除字符串两边空格

data = "   Hello World!   "  
cleaned_data = data.strip()  # 神奇的一行,左右空格拜拜  

  • 解读:strip()方法去掉字符串首尾的空白字符,简单高效。

2. 转换数据类型

num_str = "123"  
num_int = int(num_str)  # 字符串转整数,就是ihEsBzeS这么直接  
  • 注意:转换时要确保数据格式正确,否则会报错。

3. 大小写转换

text = "Python is Awesome"  
lower_text = text.lower()  # 全部变小写,便于统一处理  
upper_text = text.upper()  # 或者全部大写,随你心情  

4. 移除列表中的重复元素

my_list = [1, 2, 2, 3, 4, 4]  
unique_list = list(set(my_list))  # 集合特性,去重无压力  
  • 小贴士:这招虽好,但改变了原列表顺序哦。

5. 快速统计元素出现次数

from collections import Counter  
data = ['apple', 'banana', 'apple', 'orange']  
counts = dict(Counter(data))  # 想要知道谁最受欢迎?  
  • 解读:Counter是统计神器,轻松获取频率。

6. 字符串分割成列表

sentence = "Hello world"  
words = sentence.split(" ")  # 分割符默认为空格,一句话变单词列表  

7. 列表合并

list1 = [1, 2, 3]  
list2 = [4, 5, 6]  
merged_list = list1 + list2  # 合并列表,就这么简单  

8. 数据填充

my_list = [1, 2]  
filled_list = my_list * 3  # 重复三次,快速填充列表  

9. 提取日期时间

from datetime import datetime  
date_str = "2023-04-01"  
date_obj = datetime.strptime(date_str, "%Y-%m-%d")  # 日期字符串变对象  
  • 关键点:%Y-%m-%d是日期格式,按需调整。

10. 字符串替换

old_string = "Python is fun."  
new_string = old_string.replace("fun", "awesome")  # 改头换面,一言既出  

11. 快速排序

numbers = [5, 2, 9, 1, 5]  
sorted_numbers = sorted(numbers)  # 自然排序,升序默认  
  • 进阶:reverse=True可降序排列。

12. 提取数字

mixed_str = "The year is 2023"  
nums = ''.join(filter(str.isdigit, mixed_str))  # 只留下数字,其余走开  
  • 解密filter函数配合isdigit,只保留数字字符。

13. 空值处理(假设是列表)

data_list = [None, 1, 2, None, 3]  
filtered_list = [x for x in data_list if x is not None]  # 拒绝空值,干净利落  
  • 语法糖:列表推导式,简洁优雅。

14. 字典键值对互换

my_dict = {"key1": "value1", "key2": "value2"}  
swapped_dict = {v: k for k, v in my_dict.items()}  # 翻转乾坤,键变值,值变键  

15. 平均值计算

numbers = [10, 20, 30, 40]  
average = sum(numbers) / len(numbers)  # 平均数,一步到位  

16. 字符串分组

s = "abcdef"  
grouped = [s[i:i+2] for i in range(0, len(s), 2)]  # 每两个一组,分割有道  
  • 应用:适用于任何需要分组的场景。

17. 数据标准化

import numpy as np  
data = np.array([1, 2, 3])  
normalized_data = (data - data.mean()) / data.std()  # 数学之美,标准分布  
  • 背景:数据分析必备,让数据符合标准正态分布。

18. 数据过滤(基于条件)

data = [1, 2, 3, 4, 5]  
even_numbers = [x for x in data if x % 2 == 0]  # 只留偶数,排除异己  
  • 技巧:列表推导结合条件判断,高效筛选。

进阶实践与技巧

既然你已经掌握了基础的十八种方法,接下来让我们深入一些,探讨如何将这些技巧结合起来,解决更复杂的数据清洗问题,并分享一些实战中的小技巧。

1. 复杂字符串处理:正则表达式

正则表达式是数据清洗中不可或缺的工具,虽然严格来说可能超过一行,但它能高效地处理模式匹配和替换。

import re  
text = "Email: example@email.com Phone: 123-456-7890"  
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)  
phones = re.findall(r'\b\d{3}-\d{3}-\d{4}\b', text)  

这段代码分别提取了文本中的电子邮件和电话号码,展示了正则表达式的强大。

2. Pandas库的魔法

对于数据分析和清洗,Pandas是不二之选。虽然Pandas的命令通常不止一行,但其高效性和简洁性值得学习。

iChina编程mport pandas as pd  
df = pd.read_csv('data.cihEsBzeSsv')  
# 删除含有缺失值的行  
df_clean = df.dropna()  
# 替换特定值  
df['column_name'] = df['column_name'].replace('old_value', 'new_value')  
  • 注意:Pandas虽然强大,但对于初学者可能需要更多时间来熟悉。

3. 错误处理和日志记录

在处理大量数据时,错误几乎是不可避免的。学会用try-except结构捕获异常,并使用logging记录日志,可以大大提升调试效率。

import logging  
logging.basicConfig(level=logging.INFO)  
try:  
    result = some_function_that_might_fail()  
    logging.info(f"成功执行!结果:{re编程sult}")  
except Exception as e:  
    logging.error(f"执行失败:{e}")  

这样,即使出现问题,也能迅速定位。

4. 批量操作与函数封装

将常用的数据清洗步骤封装成函数,可以大大提高代码的复用性和可读性。python

def clean_phone(phone):  
    """移除电话号码中的非数字字符"""  
    return ''.join(c for c in phone if c.isdigit())  
  
phone_numbers = ['123-456-7890', '(555) 555-5555']  
cleaned_numbers = [clean_phone(phone) for phone in phone_numbers]  

通过定义clean_phone函数,我们可以轻松地清理一批电话号码。

实战建议:

  • 分步进行:不要试图一次性完成所有清洗任务,分步骤处理,逐步优化

  • 测试数据:在实际数据上测试你的清洗逻辑前,先用小样本或模拟数据验证代码的正确性。

  • 文档和注释:即使是简单的数据清洗脚本,良好的注释也能为未来的自己或其他开发者提供巨大帮助。

到此这篇关于Python实现数据清洗的18种方法的文章就介绍到这了,更多相关Python 数据清洗内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python实现数据清洗的18种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153125

相关文章

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

用Java打造简易计算器的实现步骤

《用Java打造简易计算器的实现步骤》:本文主要介绍如何设计和实现一个简单的Java命令行计算器程序,该程序能够执行基本的数学运算(加、减、乘、除),文中通过代码介绍的非常详细,需要的朋友可以参考... 目录目标:一、项目概述与功能规划二、代码实现步骤三、测试与优化四、总结与收获总结目标:简单计算器,设计

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python中os.stat().st_size、os.path.getsize()获取文件大小

《python中os.stat().st_size、os.path.getsize()获取文件大小》本文介绍了使用os.stat()和os.path.getsize()函数获取文件大小,文中通过示例代... 目录一、os.stat().st_size二、os.path.getsize()三、函数封装一、os

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ