用einsum实现MultiHeadAttention前向传播

2024-09-08 14:04

本文主要是介绍用einsum实现MultiHeadAttention前向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

einsum教程网站Einstein Summation in Numpy | Olexa Bilaniuk's IFT6266H16 Course Blog

编写训练模型

import tensorflow as tfclass Model(tf.keras.Model):def __init__(self, num_heads, model_dim):super().__init__()self.AttentionLayer = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=model_dim)self.OutputLayer = tf.keras.layers.Dense(units=1)def call(self, x):x = self.AttentionLayer(query=x, value=x)x = self.OutputLayer(x)return xmodel = Model(num_heads=2, model_dim=4)model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),optimizer="Adam",metrics=['accuracy'])input_train = tf.constant([[[1, 2, 3], [4, 5, 6]],[[1, 1, 1], [2, 2, 6]]], dtype=tf.float32)output_label = tf.constant([[[1], [0]],[[0], [0]]], dtype=tf.float32)tf_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs")
model.fit(x=input_train,y=output_label,epochs=10,callbacks=[tf_callback])tf.saved_model.save(model, 'MultiHeadAttention')

训练样本input_train的shape为(2, 2, 3)→(batch_size, sentence_length, Embedding_dim),经过模型后的输出shape为(2,2,1),标签值的shape为(2, 2, 1),损失函数选择的是二分类交叉熵。所以该模型可以应用于二分类性质的命名实体识别。简单来说,该模型可以判断一个句子中哪些词属于我们感兴趣的词类,哪些不属于。

打印模型矩阵参数

import tensorflow as tfsave_path = 'MultiHeadAttention/variables/variables'  #reader = tf.train.load_checkpoint(save_path)  # 得到CheckpointReader"""  打印Checkpoint中存储的所有参数名和参数shape """
for variable_name, variable_shape in reader.get_variable_to_shape_map().items():print(f'{variable_name} : {variable_shape}')打印结果,_CHECKPOINTABLE_OBJECT_GRAPH : []
optimizer/beta_1/.ATTRIBUTES/VARIABLE_VALUE : []
keras_api/metrics/0/count/.ATTRIBUTES/VARIABLE_VALUE : []
variables/5/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
optimizer/beta_2/.ATTRIBUTES/VARIABLE_VALUE : []
optimizer/learning_rate/.ATTRIBUTES/VARIABLE_VALUE : []
keras_api/metrics/0/total/.ATTRIBUTES/VARIABLE_VALUE : []
keras_api/metrics/1/count/.ATTRIBUTES/VARIABLE_VALUE : []
keras_api/metrics/1/total/.ATTRIBUTES/VARIABLE_VALUE : []
optimizer/decay/.ATTRIBUTES/VARIABLE_VALUE : []
variables/2/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
optimizer/iter/.ATTRIBUTES/VARIABLE_VALUE : []
variables/0/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/0/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/0/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/1/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/1/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/5/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/1/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/6/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [2, 4, 3]
variables/2/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/2/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/3/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/3/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/3/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/4/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/4/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/4/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]
variables/5/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]
variables/9/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [1]
variables/6/.ATTRIBUTES/VARIABLE_VALUE : [2, 4, 3]
variables/6/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [2, 4, 3]
variables/7/.ATTRIBUTES/VARIABLE_VALUE : [3]
variables/8/.ATTRIBUTES/VARIABLE_VALUE : [3, 1]
variables/7/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [3]
variables/7/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [3]
variables/8/.OPTIMIZER_SLOT/optimizer/m/.ATTRIBUTES/VARIABLE_VALUE : [3, 1]
variables/8/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [3, 1]
variables/9/.ATTRIBUTES/VARIABLE_VALUE : [1]
variables/9/.OPTIMIZER_SLOT/optimizer/v/.ATTRIBUTES/VARIABLE_VALUE : [1]

其中我们只需要注意如下参数,

variables/0/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]

variables/1/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]

variables/5/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]

variables/2/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]

variables/3/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]

variables/4/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]

variables/6/.ATTRIBUTES/VARIABLE_VALUE : [2, 4, 3]

variables/7/.ATTRIBUTES/VARIABLE_VALUE : [3]
variables/8/.ATTRIBUTES/VARIABLE_VALUE : [3, 1]

variables/9/.ATTRIBUTES/VARIABLE_VALUE : [1]

这些参数代表着模型中所有的kernelbias,variable后面的序号代表着输入在模型中依次经历的运算。利用模型内部的计算逻辑以及shape分布,我们可以找出对应的kernelbias

值得注意的是,在tf.keras.layers.MultiHeadAttention源码中,query映射层是先进行计算的,后面依次为key映射层,value映射层。所以,

variables/0/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4] 对应query映射层的kernel

variables/1/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]对应query映射层的bias

variables/2/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]对应key映射层的kernel

variables/3/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]对应key映射层的bias

variables/4/.ATTRIBUTES/VARIABLE_VALUE : [3, 2, 4]对应value映射层的kernel

variables/5/.ATTRIBUTES/VARIABLE_VALUE : [2, 4]对应value映射层的bias

variables/6/.ATTRIBUTES/VARIABLE_VALUE : [2, 4, 3]对应MutiHeadAttention中输出映射层的kernel

variables/7/.ATTRIBUTES/VARIABLE_VALUE : [3]对应MutiHeadAttention中输出映射层的bias

variables/8/.ATTRIBUTES/VARIABLE_VALUE : [3, 1]对应Dense层的kernel

variables/9/.ATTRIBUTES/VARIABLE_VALUE : [1]对应Dense层的bias

MultiHeadAttention

多头映射层

''' abc , cde -> abde a : size of batchb : length of sequencec : dimension of Embeddingd : number of headse : dimension of output x : input, shape=(batch_size, sequence_length, dim)y : kenel, shape=(dim, heads_num, output_dim) '''def project_dense(x, y):output = np.empty((x.shape[0], x.shape[1], y.shape[1], y.shape[2]))for a in range(x.shape[0]):for b in range(x.shape[1]):for d in range(y.shape[1]):for e in range(y.shape[2]):sum_dot = 0for c in range(x.shape[2]):sum_dot += x[a][b][c] * y[c][d][e]output[a][b][d][e] = sum_dotreturn output

代码验证,

''' shape = (2, 2, 3) '''
x = tf.constant([[[1, 2, 3], [4, 5, 3]],[[7, 8, 9], [10, 11, 12]]])''' shape = (3, 2, 3) '''
y = tf.constant([[[1, 2, 3], [4, 5, 3]],[[7, 8, 9], [10, 11, 12]],[[7, 8, 9], [10, 11, 12]]])print(tf.einsum('abc,cde->abde', x, y).numpy())
print(project_dense(x, y))[[[[ 36  42  48][ 54  60  63]][[ 60  72  84][ 96 108 108]]][[[126 150 174][198 222 225]][[171 204 237][270 303 306]]]][[[[ 36.  42.  48.][ 54.  60.  63.]][[ 60.  72.  84.][ 96. 108. 108.]]][[[126. 150. 174.][198. 222. 225.]][[171. 204. 237.][270. 303. 306.]]]]

多头注意力层

计算注意力分数矩阵
''' aecd, abcd -> acbe a : size of batch e : number of key b : number of queryc : number of heads d : dimension of query/key x is key and y is query '''def compute_AttentionScores(x, y):output = np.empty((x.shape[0], x.shape[2], y.shape[1], x.shape[1]))for a in range(x.shape[0]):for c in range(x.shape[2]):for b in range(y.shape[1]):for e in range(x.shape[1]):sum_dot = 0for d in range(x.shape[3]):sum_dot += x[a][e][c][d] * y[a][b][c][d]output[a][c][b][e] = sum_dotreturn output
根据注意力分数对value进行加权叠加
''' acbe,aecd->abcd a : size of batch c : number of headsb : number of querye : number of key/value d : dimension of value x is attention_scores and y is value'''def Value_WeightedStack(x, y):output = np.empty((x.shape[0], x.shape[2], y.shape[2], y.shape[3]))for a in range(x.shape[0]):for b in range(x.shape[2]):for c in range(y.shape[2]):for d in range(y.shape[3]):sum_dot = 0for e in range(x.shape[3]):sum_dot += x[a][c][b][e] * y[a][e][c][d]output[a][b][c][d] = sum_dotreturn output

输出映射层

''' abcd, cde -> abe a : size of batch b : number of queryc : number of head d : dimension of value e : dimension of output x is WeightedStack_Value and y is kernel'''def project_final(x, y):output = np.empty((x.shape[0], x.shape[1], y.shape[2]))for a in range(x.shape[0]):for b in range(x.shape[1]):for e in range(y.shape[2]):sum_dot = 0for c in range(x.shape[2]):for d in range(x.shape[3]):sum_dot += x[a][b][c][d] * y[c][d][e]output[a][b][e] = sum_dotreturn output

Dense

为了使得方便验证这次试验,在MultiHeadAttentionn后面添加一个Dense层。

'''abc, cd -> abd x is input and y is kernel '''def output_dense(x, y):output = np.empty((x.shape[0], x.shape[1], y.shape[1]))for a in range(x.shape[0]):for b in range(x.shape[1]):for d in range(y.shape[1]):sum_dot = 0for c in range(x.shape[2]):sum_dot += x[a][b][c] * y[c][d]output[a][b][d] = sum_dotreturn output

构建模型的前向传播

在前面我们找出了模型内部所有的kenel和bias,接下来我们将打印出这些参数,并将这些参数添加到我们自己编写的模型中去,实现前向传播。

print(reader.get_tensor('variables/0/.ATTRIBUTES/VARIABLE_VALUE')) //k1
print(reader.get_tensor('variables/1/.ATTRIBUTES/VARIABLE_VALUE')) //b1
print(reader.get_tensor('variables/5/.ATTRIBUTES/VARIABLE_VALUE')) //b2
print(reader.get_tensor('variables/2/.ATTRIBUTES/VARIABLE_VALUE')) //k2
print(reader.get_tensor('variables/3/.ATTRIBUTES/VARIABLE_VALUE')) //b3
print(reader.get_tensor('variables/4/.ATTRIBUTES/VARIABLE_VALUE')) //k3
print(reader.get_tensor('variables/6/.ATTRIBUTES/VARIABLE_VALUE')) //MultiHead_output_kerner
print(reader.get_tensor('variables/7/.ATTRIBUTES/VARIABLE_VALUE')) //MultiHead_output_bias
print(reader.get_tensor('variables/8/.ATTRIBUTES/VARIABLE_VALUE')) //output_dense_kernel
print(reader.get_tensor('variables/9/.ATTRIBUTES/VARIABLE_VALUE')) //output_dense_bias
class my_model:def __init__(self, input):self.input = inputdef __call__(self):x = tf.cast(self.input,dtype=tf.double)value = tf.add(project_dense(x, k3), b2)key = tf.add(project_dense(x, k2), b3)query = tf.add(project_dense(x, k1), b1)attention_scores = tf.nn.softmax(compute_AttentionScores(key, query), axis=-1)Stacked_value = Value_WeightedStack(attention_scores, value)MUltiHead_output = tf.add(project_final(Stacked_value, MultiHead_output_kerner), MultiHead_output_bias)output = tf.add(output_dense(MUltiHead_output, output_dense_kernel), output_dense_bias)return output

验证

最后我们将分别打印出两个模型前向传播的输出(一个是自己实现的,另一个是TensorFlow实现的),并进行结果比对,看是否相差无几。

test_in = tf.constant([[[0.1, 0.1, 0.1], [0.1, 0.1, 0.1]]], dtype=tf.float32)
test_in0 = tf.constant([[[1, 1, 1], [1, 1, 1]]], dtype=tf.float32)
test_in1 = tf.constant([[[10, 10, 10], [10, 10, 10]]], dtype=tf.float32)
test_in2 = tf.constant([[[100, 100, 100], [100, 100, 100]]], dtype=tf.float32)
test_in3 = tf.constant([[[1000, 1000, 1000], [1000, 1000, 1000]]], dtype=tf.float32)
model = tf.saved_model.load('MultiHeadAttention')
print(model(test_in))
print(model(test_in0))
print(model(test_in1))
print(model(test_in2))
print(model(test_in3))tf.Tensor(
[[[-0.02398136][-0.02398136]]], shape=(1, 2, 1), dtype=float32)
tf.Tensor(
[[[-0.75980777][-0.75980777]]], shape=(1, 2, 1), dtype=float32)
tf.Tensor(
[[[-8.1180725][-8.1180725]]], shape=(1, 2, 1), dtype=float32)
tf.Tensor(
[[[-81.700714][-81.700714]]], shape=(1, 2, 1), dtype=float32)
tf.Tensor(
[[[-817.52716][-817.52716]]], shape=(1, 2, 1), dtype=float32)
test_in = tf.constant([[[0.1, 0.1, 0.1], [0.1, 0.1, 0.1]]], dtype=tf.float32)
test_in0 = tf.constant([[[1, 1, 1], [1, 1, 1]]], dtype=tf.float32)
test_in1 = tf.constant([[[10, 10, 10], [10, 10, 10]]], dtype=tf.float32)
test_in2 = tf.constant([[[100, 100, 100], [100, 100, 100]]], dtype=tf.float32)
test_in3 = tf.constant([[[1000, 1000, 1000], [1000, 1000, 1000]]], dtype=tf.float32)
print(my_model(test_in)())
print(my_model(test_in0)())
print(my_model(test_in1)())
print(my_model(test_in2)())
print(my_model(test_in3)())tf.Tensor(
[[[-0.02398137][-0.02398137]]], shape=(1, 2, 1), dtype=float64)
tf.Tensor(
[[[-0.75980776][-0.75980776]]], shape=(1, 2, 1), dtype=float64)
tf.Tensor(
[[[-8.11807168][-8.11807168]]], shape=(1, 2, 1), dtype=float64)
tf.Tensor(
[[[-81.70071091][-81.70071091]]], shape=(1, 2, 1), dtype=float64)
tf.Tensor(
[[[-817.5271032][-817.5271032]]], shape=(1, 2, 1), dtype=float64)

两个输出结果相差无几,验证成功。

这篇关于用einsum实现MultiHeadAttention前向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148314

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如