算法复杂度的简单介绍

2024-09-08 12:12
文章标签 算法 简单 介绍 复杂度

本文主要是介绍算法复杂度的简单介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法复杂度是衡量算法执行效率和资源消耗的指标,通常分为时间复杂度空间复杂度。时间复杂度评估算法执行所需时间随输入规模的变化,空间复杂度评估算法占用内存的增长情况。复杂度通常用大O符号来表示,它描述了最坏情况下的增长速率。

1. 时间复杂度

时间复杂度表示算法执行所需时间随输入规模 nnn 的变化关系。常见的时间复杂度如下(从快到慢):

a. 常数时间:O(1)

  • 不管输入大小如何,算法总是执行固定的操作。
  • 示例:数组中访问某个元素。
    int element = array[5]; // O(1) 

b. 对数时间:O(log n)

  • 每次迭代减少问题规模的某个倍数,通常是二分法等算法。
  • 示例:二分查找。
    int binarySearch(int arr[], int size, int target) {int left = 0, right = size - 1;while (left <= right) {int mid = left + (right - left) / 2;if (arr[mid] == target)return mid;else if (arr[mid] < target)left = mid + 1;elseright = mid - 1;}return -1;
    }
     

c. 线性时间:O(n)

  • 算法的时间复杂度随着输入大小线性增长。
  • 示例:遍历一个数组。
    for (int i = 0; i < n; i++) { // O(n) } 

d. 线性对数时间:O(n log n)

  • 比线性复杂度稍慢,常见于高效的排序算法,如归并排序、快速排序。
  • 示例:归并排序。
    void mergeSort(int arr[], int n) { if (n > 1) { // Divide the array into two halves mergeSort(arr, n / 2); mergeSort(arr + n / 2, n - n / 2); // Merge the two halves } } 

e. 平方时间:O(n²)

  • 算法的时间复杂度随着输入规模的平方增长,常见于嵌套的循环。
  • 示例:冒泡排序。
  • void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {// swap}}}
    }

f. 立方时间:O(n³)

  • 时间复杂度与输入规模的立方成比例,通常出现在三重嵌套循环中。
  • 示例:矩阵乘法的朴素算法。

g. 指数时间:O(2^n)

  • 输入规模每增加1,执行时间翻倍,通常是解决组合问题的递归算法。
  • 示例:递归解决斐波那契数列。
    int fibonacci(int n) {if (n <= 1) return n;return fibonacci(n - 1) + fibonacci(n - 2);  // O(2^n)
    }
     

h. 阶乘时间:O(n!)

  • 输入规模每增加1,执行时间呈阶乘增长,常见于排列组合问题。
  • 示例:解决N皇后问题。

2. 空间复杂度

空间复杂度评估算法所需的内存随输入规模的变化情况。它表示程序在运行过程中需要的额外存储空间。

  • O(1):常数空间,不管输入规模如何,所需额外空间是固定的。例如,交换两个变量的算法。
  • O(n):线性空间,所需的额外空间随着输入规模线性增加。例如,使用一个数组存储输入数据的副本。
  • O(n²):所需的存储空间与输入的平方成正比,通常出现在矩阵相关的问题中。

3. 常见算法的时间复杂度表

算法类型最佳情况平均情况最坏情况
冒泡排序O(n)O(n²)O(n²)
选择排序O(n²)O(n²)O(n²)
插入排序O(n)O(n²)O(n²)
归并排序O(n log n)O(n log n)O(n log n)
快速排序O(n log n)O(n log n)O(n²)
二分查找O(1)O(log n)O(log n)
线性查找O(1)O(n)O(n)

4. 大O符号的简化原则

在表示时间复杂度时,我们通常关注输入规模 nnn 增长时的趋势,因此忽略常数项和低次项。例如:

  • 如果一个算法的复杂度是 5n+35n + 35n+3,我们会简化为 O(n)O(n)O(n)。
  • 如果复杂度是 n2+nn^2 + nn2+n,我们会简化为 O(n2)O(n^2)O(n2)。

5. 实际应用中的复杂度权衡

虽然理论上高效的算法(如 O(n log n) 的排序算法)往往表现优异,但在某些场景下,低复杂度的算法未必比高复杂度的算法快。例如,当输入规模较小时,冒泡排序(O(n²))可能比快速排序(O(n log n))更快。因此,选择算法时需要考虑实际数据规模硬件环境

6. 总结

  • 时间复杂度衡量算法执行时间随输入规模的增长而变化。
  • 空间复杂度评估算法所需的存储空间随输入规模的变化。
  • 常见的时间复杂度包括:O(1), O(log n), O(n), O(n log n), O(n²) 等,越高阶的复杂度,随着输入规模增长,算法性能下降越快。
  • 编写高效算法时应考虑优化时间和空间复杂度,在不同的场景中合理选择算法。

 

这篇关于算法复杂度的简单介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148075

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h