mysql创建新表,同步数据

2024-09-08 10:36

本文主要是介绍mysql创建新表,同步数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import os
import argparse
import glob
import cv2
import numpy as np
import onnxruntime
import tqdm
import pymysql
import time
import json
from datetime import datetime

os.environ[“CUDA_VISIBLE_DEVICES”] = “0” # 使用 GPU 0

def get_connection():
“”“创建并返回一个新的数据库连接。”“”
# 数据库连接信息
host = ‘localhost’
user = ‘root’
password = ‘123456’
database = ‘video_streaming_database’
return pymysql.connect(host=host, user=user, password=password, database=database)

def get_connection_results():
“”“创建并返回一个新的数据库连接。”“”
# 数据库连接信息
host = ‘localhost’
user = ‘root’
password = ‘123456’
database = ‘results’
return pymysql.connect(host=host, user=user, password=password, database=database)

def ensure_connection(connection):
“”“确保连接有效。如果连接无效,则重新建立连接。”“”
if connection is None or not connection.open:
print(“Connection is invalid or closed. Reconnecting…”)
return get_connection()
return connection

def ensure_connection_results(connection):
“”“确保连接有效。如果连接无效,则重新建立连接。”“”
if connection is None or not connection.open:
print(“Connection is invalid or closed. Reconnecting…”)
return get_connection_results()
return connection

def get_parser():
parser = argparse.ArgumentParser(description=“onnx model inference”)

parser.add_argument("--model-path",default=R"/home/hitsz/yk_workspace/Yolov5_track/weights/sbs_r50_0206_export_params_True.onnx",help="onnx model path"
)
parser.add_argument("--input",default="/home/hitsz/yk_workspace/Yolov5_track/test_4S_videos/test_yk1_det3/save_crops/test_yk1/person/1/*jpg",nargs="+",help="A list of space separated input images; ""or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument("--output",default='/home/hitsz/yk_workspace/Yolov5_track/02_output_det/onnx_output',help='path to save the output features'
)
parser.add_argument("--height",type=int,default=384,help="height of image"
)
parser.add_argument("--width",type=int,default=128,help="width of image"
)
return parser

def preprocess(image_path, image_height, image_width):
original_image = cv2.imread(image_path)
norm_mean = np.array([0.485, 0.456, 0.406])
norm_std = np.array([0.229, 0.224, 0.225])
normalized_img = (original_image / 255.0 - norm_mean) / norm_std
original_image = normalized_img[:, :, ::-1]
img = cv2.resize(original_image, (image_width, image_height), interpolation=cv2.INTER_CUBIC)
img = img.astype(“float32”).transpose(2, 0, 1)[np.newaxis] # (1, 3, h, w)
return img

def normalize(nparray, order=2, axis=-1):
“”“Normalize a N-D numpy array along the specified axis.”“”
norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
return nparray / (norm + np.finfo(np.float32).eps)
data2 = []
if name == “main”:
args = get_parser().parse_args()

# 配置数据库连接
db_config = {'host': 'localhost','user': 'root','password': '123456','database': 'video_streaming_database',
}db_config_results = {'host': 'localhost','user': 'root','password': '123456','database': 'results',
}
# 定义批处理大小
batch_size = 500
pre_end_frame_idx = 10000
# 连接到数据库
connection = pymysql.connect(**db_config)
connection_results = pymysql.connect(**db_config_results)
while True:connection = ensure_connection(connection)  # 确保连接有效with connection.cursor() as cursor:cursor.execute("SELECT MAX(id) FROM new_detection_tracking_results_1")max_id = cursor.fetchone()[0]print(max_id)# 获取ID前面100条数据if max_id is not None:end_id = max(1, max_id-1)cursor.execute(f"SELECT crop_image_path FROM new_detection_tracking_results_1 WHERE id = {end_id}")crop_image_path = cursor.fetchall()                    connection.commit()connection.close()if max_id is not None:dir_path = os.path.dirname(os.path.dirname(crop_image_path[0][0]))file_name = os.path.basename(crop_image_path[0][0])cam_ip = file_name.split("_")[0]end_frame_idx = int(file_name.split("_")[1]) - 1440for i in range(pre_end_frame_idx, end_frame_idx):json_path = os.path.join(dir_path, cam_ip + "_" + str(i).zfill(8) + "_track.json")if not os.path.exists(json_path):continuecreation_time = os.path.getctime(json_path)# 转换为 '%Y-%m-%d %H:%M:%S' 格式formatted_creation_time = datetime.fromtimestamp(creation_time).strftime('%Y-%m-%d %H:%M:%S')# print(formatted_creation_time)for j in range(48):json_name_path = os.path.join(dir_path, cam_ip + "_" + str(i-j).zfill(8) + "_track_name.json")if os.path.exists(json_name_path):breakid_name = {}if os.path.exists(json_name_path):with open(json_name_path, 'r') as f1:id_name = json.load(f1)else:continueif os.path.exists(json_path[:-5]):continueif os.path.exists(json_path):      with open(json_path, 'r') as f:tracking_data = json.load(f)# 遍历跟踪结果,并绘制到图像上for key in tracking_data.keys():id = keyaction = tracking_data[key][6]if len(action.split("||")) == 0:continueelif len(action.split("||")) == 1:action_show = action.split("||")[0]else:action_show = action.split("||")[0] + " " + action.split("||")[1]if len(id_name) > 0 and key.zfill(4) in id_name.keys():name = id_name[key.zfill(4)].split("_")[0] + ": 0." + id_name[key.zfill(4)].split("_")[-1][:2]data2.append((cam_ip,int(end_frame_idx), \int(key),\name,\action_show,\formatted_creation_time))else:name = ""os.makedirs(json_path[:-5], exist_ok=True)print('---------len(data2) is:',len(data2))if len(data2) >= 500:connection_results = ensure_connection_results(connection_results)  # 确保连接有效with connection_results.cursor() as cursor:# 插入数据的SQL语句insert_sql = """INSERT INTO time_results (camera_ip, frame_number, tracking_id, matched_id, action_recognized, event_datetime)VALUES (%s, %s, %s, %s, %s, %s);"""# 执行插入操作cursor.executemany(insert_sql, data2)connection_results.commit()data2 = []pre_end_frame_idx = end_frame_idx   time.sleep(5)

这篇关于mysql创建新表,同步数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147874

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映