C++编程:ZeroMQ进程间(订阅-发布)通信配置优化

2024-09-08 09:52

本文主要是介绍C++编程:ZeroMQ进程间(订阅-发布)通信配置优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 0. 概述
    • 1. 发布者同步发送(pub)与订阅者异步接收(sub)
      • 示例代码
      • 可能的副作用:
    • 2. 适度增加缓存和队列
      • 示例代码
      • 副作用:
    • 3. 动态的IPC通道管理
      • 示例代码
      • 副作用:
    • 4. 接收消息的超时设置
      • 示例代码
      • 副作用:
    • 5. 增加I/O线程数量
      • 示例代码
      • 副作用:
    • 6. 异步消息发送(使用`dontwait`标志)
      • 示例代码
      • 副作用:
    • 7. 其他可以考虑的优化项
      • 7.1 立即发送(ZMQ_IMMEDIATE)
        • 示例代码
        • 副作用:
      • 7.2 消息压缩(ZMQ_CONFLATE)
        • 示例代码
        • 副作用:

0. 概述

ZeroMQ是适用于高性能的进程间通信(IPC)的中间件。本文将详细介绍几种优化ZeroMQ订阅-发布通信的方法,并通过代码示例展示如何在实际项目中应用。

1. 发布者同步发送(pub)与订阅者异步接收(sub)

使用发布者同步发送消息和订阅者异步接收消息是一种常见的高效通信模式。发布者同步发送确保消息可靠传输,而订阅者异步接收则提高了系统的处理效率,适合高吞吐量、实时性要求高的系统。

示例代码

同步发送:

zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");// 同步发送消息,确保消息已成功加入队列
zmq::message_t message(data, data_size);
publisher.send(message, zmq::send_flags::none);

异步接收:

zmq::socket_t subscriber(context, ZMQ_SUB);
subscriber.connect("ipc:///tmp/pub");
subscriber.setsockopt(ZMQ_SUBSCRIBE, "", 0);// 非阻塞接收
zmq::message_t message;
if (!subscriber.recv(message, zmq::recv_flags::dontwait)) {// 接收失败后,记录日志并进行阻塞重试std::cerr << "异步接收失败,进行阻塞重试..." << std::endl;if (subscriber.recv(message)) {std::cout << "阻塞重试成功接收到消息。" << std::endl;}
}

可能的副作用:

暂时没想到

2. 适度增加缓存和队列

调整发送和接收的高水位标记,可以减少在高负载下的消息丢失情况。

示例代码

zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");int sndhwm = 10000; // 发送高水位标记
int rcvhwm = 10000; // 接收高水位标记
publisher.setsockopt(ZMQ_SNDHWM, &sndhwm, sizeof(sndhwm));
publisher.setsockopt(ZMQ_RCVHWM, &rcvhwm, sizeof(rcvhwm));

副作用:

  • 增加水位标记将占用更多内存。

3. 动态的IPC通道管理

为每个Topic动态创建独立的IPC通道,可以提高消息的隔离性,减少不同Topic间的相互干扰。

示例代码

zmq::context_t context(1);
std::vector<zmq::socket_t> publishers;for (int i = 0; i < num_topics; ++i) {zmq::socket_t pub(context, ZMQ_PUB);std::string ipc_address = "ipc:///tmp/topic" + std::to_string(i) + "_ipc";pub.bind(ipc_address);publishers.push_back(std::move(pub));
}

副作用:

  • 管理多个IPC通道会增加系统复杂性,每个IPC通道会消耗操作系统资源。

4. 接收消息的超时设置

设置消息接收的超时时间可以避免订阅者长时间阻塞在消息接收上,从而提高系统的整体响应性。

示例代码

zmq::socket_t subscriber(context, ZMQ_SUB);
subscriber.connect("ipc:///tmp/pub");
subscriber.setsockopt(ZMQ_SUBSCRIBE, "", 0);  // 订阅所有消息int timeout = 5000; // 5秒超时
subscriber.setsockopt(ZMQ_RCVTIMEO, &timeout, sizeof(timeout));zmq::message_t message;
if (!subscriber.recv(message)) {std::cerr << "接收超时,未接收到消息。" << std::endl;
}

副作用:

  • 超时设置过短时可能会丢失消息,尤其是在网络延迟较大的情况下。

5. 增加I/O线程数量

通过增加I/O线程,可以提高系统的并发处理能力,适用于多核CPU的场景。

示例代码

zmq::context_t context(4); // 使用4个I/O线程
zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");

副作用:

  • 增加线程数量会占用更多的CPU资源,尤其在资源有限的环境中。

6. 异步消息发送(使用dontwait标志)

通过异步消息发送,发布者可以在消息队列满时不被阻塞,这适用于高频率发送的场景。

示例代码

zmq::socket_t publisher(context, ZMQ_PUB);
publisher.bind("ipc:///tmp/pub");zmq::message_t message(data, data_size);
bool sent = publisher.send(message, zmq::send_flags::dontwait);
if (!sent) {std::cerr << "异步发送失败。" << std::endl;
}

副作用:

  • 如果队列满了,消息将无法发送并可能丢失,这可能导致关键数据的丢失。可以考虑“适度增加缓存和队列”。

7. 其他可以考虑的优化项

7.1 立即发送(ZMQ_IMMEDIATE)

立即发送确保在接收方连接还未完全建立时,消息能够立刻传输。适用于需要极快响应的场景。

示例代码
zmq::socket_t publisher(context, ZMQ_PUB);
publisher.setsockopt(ZMQ_IMMEDIATE, 1);
publisher.bind("ipc:///tmp/pub");zmq::message_t message(data, data_size);
publisher.send(message, zmq::send_flags::none);
副作用:
  • 如果接收方连接不稳定,消息可能被丢弃。

7.2 消息压缩(ZMQ_CONFLATE)

只保留最新的消息,适用于仅关心最新状态更新的场景。

示例代码
zmq::socket_t subscriber(context, ZMQ_SUB);
subscriber.connect("ipc:///tmp/pub");
subscriber.setsockopt(ZMQ_SUBSCRIBE, "", 0);
subscriber.setsockopt(ZMQ_CONFLATE, 1);zmq::message_t message;
while (subscriber.recv(message)) {// 处理最新的消息
}
副作用:
  • 旧消息将被丢弃,适用于只关心最新状态的应用,不适合高可靠性的系统。

这篇关于C++编程:ZeroMQ进程间(订阅-发布)通信配置优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147787

相关文章

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满