Mastering Python Scientific Computing

2024-09-08 00:32

本文主要是介绍Mastering Python Scientific Computing,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组

迭代法:

雅可比迭代法

高斯赛德迭代法

非迭代法:

高斯LU矩阵分解法

高斯消元法

非线性方程组:

一维非线性方程解法:

二分法

牛顿法

割线法

插值法

逆差值法

逆二次插值法

线性分式插值法

非线性方程组解法:

牛顿法

割线法

阻尼牛顿法

Broyden法

最优化方法

应用场景

工程力学

经济学

运筹学

控制工程

石油工程

分子建模

内插法

例子:有一组机房温度的数据,时间间隔可能是固定不变的,可能不是固定不变得,估计插值计算一天剩余时间机房的温度

分段常熟内插法

线性内插法

多项式内插法

样条内插法

基于高斯过程的内插法

外插法

例子:已经获得12到65各个年龄段的用户每天上网的小时数,那么估计12岁以下和65岁以上每天上网的小时数

线性外插法

多项式外插法

锥外插法

法国曲线外插法

数值积分

辛普森法则

梯形法则

精炼梯形法则

高斯积分法则

牛顿-柯特思积分法则

高斯-勒让德积分法则

数值微分

有限差分近似法

微分求积法

有限差分系数

插值微分法

微分方程

分为两类:常微分方程(ODE)和偏微分方程(PDE)

解常微分方程:

欧拉方法

泰勒级数法

龙格-库塔法

四阶龙格-库塔法

预估-校正法

解偏微分方程:

有限元法

有限差分法

有限体积法

初值问题

常微分方程的初始值是在未知函数定义域内

边界值问题

带约束的微分方程的解必须能够同时满足微分方程的所有约束

随机数生成器

应用:

统计抽样、赌博、随机生成的设计、科学与工程领域的计算机仿真等

分类:

真随机数生成器和伪随机数生成器

统计分布生成随机数:

泊松分布

指数分布

正态分布

高斯分布

伪随机数生成器:

BBS随机数生成器

Wichmann-Hill随机数生成器

进位-互补-乘法随机数生成器

反向同余随机数生成器

ISAAC随机数生成器

滞后斐波那契随机数生成器

线性同余随机数生成器

线性反馈移位寄存器

最大周期倒数随机数生成器

梅森旋转随机数生成器

进位相乘随机数生成器

Naor-Reingold伪随机数生成器

Park-Miller随机数生成器

WELL伪随机数生成器

现成数据集

https://www.opensciencedatacloud.org/publicdata/?commons_type=General

Numpy程序包

N维度数组数据结构

文件处理

SciPy程序包

优化函数

数值分析

积分与微分

统计学

聚类和空间算法

图像处理

SymPy符号计算

多项式

微积分

方程式求解

离散数学

矩阵

几何

画图

物理学

统计学

打印

Pandas程序包

Series

DataFrame

Panel

matplotlib程序包

数据可视化

Numpy的基本对象

N维数组对象

数组属性:大小、每项大小、数据、维度

x2d = np.array(((100,200,300),(111,222,333),(123,456,789)))
print(x2d.shape)
print(x2d.dtype)
print(x2d.size)
print(x2d.itemsize)
print(x2d.ndim)
print(x2d.data)

数组基本操作

x = np.array([1,12,25,8,15,35,50,7,2,10])
print(x[3:7])
print(x[1:9:2])
print(x[0:9:3])
x = np.array([1,12,25,8,15,35,50,7,2,10])
x2d = np.array(((100,200,300),(111,222,333),(123,456,789),(125,457,791),(127,459,793),(129,461,795)))
for i in x:print(i)
for row in x2d:print(row)

数组的特殊操作

x2d = np.array(((100,200,300),(111,222,333),(123,456,789),(125,457,791),(127,459,793),(129,461,795)))
print(x2d)
print(x2d.ravel())
print(x2d.resize(3,6))
print(x2d.reshape(6,3))

与数组相关的类

矩阵子类

a = np.matrix('1 2 3;4 5 6;7 8 9')
print(a)
b = np.matrix('4 5 6;7 8 9;10 11 12')
print(b)
print(a*b)

掩码数组

x = np.array([72,79,85,90,150,-135,120,-10,60,100])
mx = ma.masked_array(x,mask=[0,0,0,0,0,1,0,1,0,0])
mx2 = ma.masked_array(x,mask=x<0)
print(x.mean())
print(mx.mean())
print(mx2.mean())

结构化数组

rectype = np.dtype({'names':['mintemp','maxtemp','avgtemp','city'],'formats':['i4','i4','f4','a30']})
a = np.array([(10,44,25.2,'Indore'),(10,42,25.2,'Mumbai'),(2,48,30,'Delhi')],dtype=rectype)
print(a[0])
print(a['mintemp'])
print(a['maxtemp'])
print(a['avgtemp'])
print(a['city'])

各种可用的通用函数

x1 = np.array([72,79,85,90,150,-135,120,-10,60,100])
x2 = np.array([72,79,85,90,150,-135,120,-10,60,100])
x_angle = np.array([30,60,90,120,150,180])
x_sqr = np.array([9,16,25,225,400,625])
x_bit = np.array([2,4,8,16,32,64])
print(np.greater_equal(x1,x2))
print(np.mod(x1,x2))
print(np.exp(x1))
print(np.reciprocal(x1))
print(np.negative(x1))
print(np.isreal(x1))
print(np.isnan(np.log10(x1)))
print(np.sqrt(np.square(x_sqr)))
print(np.sin(x_angle*np.pi/180))
print(np.tan(x_angle*np.pi/180))
print(np.right_shift(x_bit,1))
print(np.left_shift(x_bit,1))

Numpy的数学模块

arr2d = np.array(((100,200,300),(111,222,333),(129,461,795)))
eig_val,eig_vec = LA.eig(arr2d)
print(LA.norm(arr2d))
print(LA.det(arr2d))
print(LA.inv(arr2d))
arr1 = np.array([[2,3],[3,4]])
arr2 = np.array([4,5])
results = np.linalg.solve(arr1,arr2)
print(results)
print(np.allclose(np.dot(arr1,results),arr2))

SciPy数学函数

积分

quad函数高斯积分

result = quad(lambda x:special.jv(4,x),0,20)
print(result)
print("Gaussian integral",np.sqrt(np.pi),quad(lambda x:np.exp(-x**2),-np.inf,np.inf))
def integrand(x,a,b,c):return a*x*x+b*x+c
a = 3
b = 4
c = 1
result = quad(integrand,0,np.inf,args=(a,b,c))
print(result)
二重积分(dblquad)和三重积分(tplquad)

def integrand(t,x,n):return np.exp(-x*t)/t**n
n = 4
result = dblquad(lambda t,x:integrand(t,x,n),0,np.inf,lambda x:0,lambda x:np.inf)
print(result)

固定间隔的高斯积分

def integrand(x,a,b):return a*x+b
a = 2
b = 1
fixed_result = fixed_quad(integrand,0,1,args=(a,b))
result = quadrature(integrand,0,1,args=(a,b))
print(result)

辛普森法则

def func1(a,x):return a*x**2+2
def func2(b,x):return b*x**3+4
x = np.array([1,2,4,5,6])
y1 = func1(2,x)
Intgrl1 = simps(y1,x)
print(Intgrl1)
y2 = func2(3,x)
Intgrl2 = simps(y2,x)
print(Intgrl2

odeint函数做常微分方程

def derivative(x,time):a = -2.0
    b = -0.1
    return array([x[1],a*x[0]+b*x[1]])
time = linspace(1.0,15.0,1000)
xinitialize = array([1.05,10.2])
x = odeint(derivative,xinitialize,time)
plt.figure()
plt.plot(time,x[:,0])
plt.xlabel('t')
plt.ylabel('x')
plt.show()
信号处理









这篇关于Mastering Python Scientific Computing的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146605

相关文章

一文教你使用Python实现本地分页

《一文教你使用Python实现本地分页》这篇文章主要为大家详细介绍了Python如何实现本地分页的算法,主要针对二级数据结构,文中的示例代码简洁易懂,有需要的小伙伴可以了解下... 在项目开发的过程中,遇到分页的第一页就展示大量的数据,导致前端列表加载展示的速度慢,所以需要在本地加入分页处理,把所有数据先放

树莓派启动python的实现方法

《树莓派启动python的实现方法》本文主要介绍了树莓派启动python的实现方法,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、RASPBerry系统设置二、使用sandroidsh连接上开发板Raspberry Pi三、运

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

Python实现多路视频多窗口播放功能

《Python实现多路视频多窗口播放功能》这篇文章主要为大家详细介绍了Python实现多路视频多窗口播放功能的相关知识,文中的示例代码讲解详细,有需要的小伙伴可以跟随小编一起学习一下... 目录一、python实现多路视频播放功能二、代码实现三、打包代码实现总结一、python实现多路视频播放功能服务端开

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

使用Python在Excel中插入、修改、提取和删除超链接

《使用Python在Excel中插入、修改、提取和删除超链接》超链接是Excel中的常用功能,通过点击超链接可以快速跳转到外部网站、本地文件或工作表中的特定单元格,有效提升数据访问的效率和用户体验,这... 目录引言使用工具python在Excel中插入超链接Python修改Excel中的超链接Python