隐私计算实训营:SplitRec:当拆分学习遇上推荐系统

2024-09-07 21:36

本文主要是介绍隐私计算实训营:SplitRec:当拆分学习遇上推荐系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拆分学习的概念

拆分学习的核心思想是拆分网络结构。每一个参与方拥有模型结构的一部分,所有参与方的模型合在一起形成一个完整的模型。训练过程中,不同参与方只对本地模型进行正向或者反向传播计算,并将计算结果传递给下一个参与方。多个参与方通过联合模型进行训练直至最终收敛。

一个典型的拆分学习例子:

Alice持有数据和基础模型。Bob只有数据、基础模型和fuse模型。

  1. Alice使用自己的数据和基础模型得到 hidden0,然后发送给Bob。
  2. Bob使用自己的数据和基础模型得到 hidden1
  3. Agg Layer使用 hidden_0 和 hidden_1 作为输入,并输出聚合后的隐层。
  4. Bob把聚合后的隐层作为fuse模型的输入,计算得到梯度。
  5. 梯度被拆分成两部分,分别返回给Alice和Bob。
  6. Alice和Bob使用各自收到的梯度更新基础模型。

SplitRec

SplitRec是隐语拆分学习针对跨域推荐场景中的模型训练所提供的一系列优化算法和策略。

在传统推荐场景中,用户的数据通常需要上传到中央服务器进行模型训练。而跨域推荐场景是指联合分布在不同域的数据进行分布式训练的推荐场景。例如一个用户在一个短视频平台看了很多短视频,在另一个电商平台被推荐相关的广告,电商平台除了自有数据外,也希望从短视频平台的数据中挖掘相关的信息。同时出于数据安全考虑,各平台数据不能被上传到中央服务器进行集中式的机器学习训练,这种联合分布在不同域的数据进行模型训练的场景很适合用联邦学习中的拆分学习。

跨域推荐模型将不同域的用户数据联合起来建模,相比传统推荐系统收集到的数据更多更丰富,同时由于数据分布在不同域,在精度、效率和安全性上都对模型的训练提出了很多挑战,主要有以下三点:

  • 模型效果上,例如DeepFM等复杂模型能否直接放到拆分框架中使用?
  • 训练效率上,模型训练中每个 batch 的前反向计算中的通信是否会严重降低训练效率?
  • 安全性上,通信的中间数据是否会造成信息泄露,引起安全性问题?

SplitRec 在效果、效率和安全方面对拆分模型训练做了很多优化。

  • 模型效果上,SplitRec 提供了拆分 DeepFM、BST、MMoe 等模型的封装。
  • 训练效率上,SplitRec 借由隐语拆分学习框架的能力,提供了压缩、流水并行等策略来提升训练效率。
  • 安全性上,SplitRec提供了安全聚合、差分隐私等安全策略。同时也提供了一些针对拆分学习的攻击方法,来验证不同攻击手段对拆分模型的影响,后续也会更新相关防御方法。

实践:在隐语中使用拆分 DeepFM 算法

DeepFM算法结合了FM和神经网络的长处,可以同时提升低维和高维特征,相比Wide&Deep模型还免去了特征工程的部分。

整体上来看。这个模型可以分成两个部分,分别是FM部分以及Deep部分。这两个部分的输入是一样的,并没有像Wide & Deep模型那样做区分。Deep的部分用来训练这些特征的高维的关联,而FM模型会通过隐藏向量V的形式来计算特征之间的二维交叉的信息。

隐语中的DeepFM

拆分的详细过程可以来看这里:

SplitRec:在隐语中使用拆分 DeepFM 算法(Tensorflow 后端) | SecretFlow v1.9.0b1 | 隐语 SecretFlow

环境设置

import secretflow as sf# Check the version of your SecretFlow
print('The version of SecretFlow: {}'.format(sf.__version__))# In case you have a running secretflow runtime already.
sf.shutdown()
sf.init(['alice', 'bob', 'charlie'], address="local", log_to_driver=False)
alice, bob, charlie = sf.PYU('alice'), sf.PYU('bob'), sf.PYU('charlie')

数据集介绍

我们这里将使用最经典的MovieLens数据集来进行演示。 MovieLens是一个开放式的推荐系统数据集,包含了电影评分和电影元数据信息。

我们对数据进行了切分:

- alice: “UserID”, “Gender”, “Age”, “Occupation”, “Zip-code”

- bob: “MovieID”, “Rating”, “Title”, “Genres”, “Timestamp”

下载并处理数据

数据拆分处理

%%capture
%%!
wget https://secretflow-data.oss-accelerate.aliyuncs.com/datasets/movielens/ml-1m.zip
unzip ./ml-1m.zip
# Read the data in dat format and convert it into a dictionary
def load_data(filename, columns):data = {}with open(filename, "r", encoding="unicode_escape") as f:for line in f:ls = line.strip("\n").split("::")data[ls[0]] = dict(zip(columns[1:], ls[1:]))return data
fed_csv = {alice: "alice_ml1m.csv", bob: "bob_ml1m.csv"}
csv_writer_container = {alice: open(fed_csv[alice], "w"), bob: open(fed_csv[bob], "w")}
part_columns = {alice: ["UserID", "Gender", "Age", "Occupation", "Zip-code"],bob: ["MovieID", "Rating", "Title", "Genres", "Timestamp"],
}
for device, writer in csv_writer_container.items():writer.write("ID," + ",".join(part_columns[device]) + "\n")
f = open("ml-1m/ratings.dat", "r", encoding="unicode_escape")users_data = load_data("./ml-1m/users.dat",columns=["UserID", "Gender", "Age", "Occupation", "Zip-code"],
)
movies_data = load_data("./ml-1m/movies.dat", columns=["MovieID", "Title", "Genres"])
ratings_columns = ["UserID", "MovieID", "Rating", "Timestamp"]rating_data = load_data("./ml-1m/ratings.dat", columns=ratings_columns)def _parse_example(feature, columns, index):if "Title" in feature.keys():feature["Title"] = feature["Title"].replace(",", "_")if "Genres" in feature.keys():feature["Genres"] = feature["Genres"].replace("|", " ")values = []values.append(str(index))for c in columns:values.append(feature[c])return ",".join(values)index = 0
num_sample = 1000
for line in f:ls = line.strip().split("::")rating = dict(zip(ratings_columns, ls))rating.update(users_data.get(ls[0]))rating.update(movies_data.get(ls[1]))for device, columns in part_columns.items():parse_f = _parse_example(rating, columns, index)csv_writer_container[device].write(parse_f + "\n")index += 1if num_sample > 0 and index >= num_sample:break
for w in csv_writer_container.values():w.close()

到此就完成了数据的处理和拆分

得到

alice: alice_ml1m.csv

bob: bob_ml1m.csv

! head alice_ml1m.csv
! head bob_ml1m.csv

构造data_builder_dict

# alice
def create_dataset_builder_alice(batch_size=128,repeat_count=5,
):def dataset_builder(x):import pandas as pdimport tensorflow as tfx = [dict(t) if isinstance(t, pd.DataFrame) else t for t in x]x = x[0] if len(x) == 1 else tuple(x)data_set = (tf.data.Dataset.from_tensor_slices(x).batch(batch_size).repeat(repeat_count))return data_setreturn dataset_builder# bob
def create_dataset_builder_bob(batch_size=128,repeat_count=5,
):def _parse_bob(row_sample, label):import tensorflow as tfy_t = label["Rating"]y = tf.expand_dims(tf.where(y_t > 3,tf.ones_like(y_t, dtype=tf.float32),tf.zeros_like(y_t, dtype=tf.float32),),axis=1,)return row_sample, ydef dataset_builder(x):import pandas as pdimport tensorflow as tfx = [dict(t) if isinstance(t, pd.DataFrame) else t for t in x]x = x[0] if len(x) == 1 else tuple(x)data_set = (tf.data.Dataset.from_tensor_slices(x).batch(batch_size).repeat(repeat_count))data_set = data_set.map(_parse_bob)return data_setreturn dataset_builderdata_builder_dict = {alice: create_dataset_builder_alice(batch_size=128,repeat_count=5,),bob: create_dataset_builder_bob(batch_size=128,repeat_count=5,),
}
from secretflow.ml.nn.applications.sl_deep_fm import DeepFMbase, DeepFMfuse
from secretflow.ml.nn import SLModelNUM_USERS = 6040
NUM_MOVIES = 3952
GENDER_VOCAB = ["F", "M"]
AGE_VOCAB = [1, 18, 25, 35, 45, 50, 56]
OCCUPATION_VOCAB = [i for i in range(21)]
GENRES_VOCAB = ["Action","Adventure","Animation","Children's","Comedy","Crime","Documentary","Drama","Fantasy","Film-Noir","Horror","Musical","Mystery","Romance","Sci-Fi","Thriller","War","Western",
]

DeepFMBase有4个参数:

-dnn_units_size: 这个参数需要提供一个list来对dnn部分进行定义,比如[256,32]意思是中间两个隐层分别是256,和32

-dnn_activation: dnn 的激活函数,eg:relu

-preprocess_layer: 需要对输入进行处理,传入一个定义好的keras.preprocesslayer

-fm_embedding_dim: fm vector的维度是多少

# Define alice's basenet
def create_base_model_alice():# Create modeldef create_model():import tensorflow as tfdef preprocess():inputs = {"UserID": tf.keras.Input(shape=(1,), dtype=tf.string),"Gender": tf.keras.Input(shape=(1,), dtype=tf.string),"Age": tf.keras.Input(shape=(1,), dtype=tf.int64),"Occupation": tf.keras.Input(shape=(1,), dtype=tf.int64),}user_id_output = tf.keras.layers.Hashing(num_bins=NUM_USERS, output_mode="one_hot")user_gender_output = tf.keras.layers.StringLookup(vocabulary=GENDER_VOCAB, output_mode="one_hot")user_age_out = tf.keras.layers.IntegerLookup(vocabulary=AGE_VOCAB, output_mode="one_hot")user_occupation_out = tf.keras.layers.IntegerLookup(vocabulary=OCCUPATION_VOCAB, output_mode="one_hot")outputs = {"UserID": user_id_output(inputs["UserID"]),"Gender": user_gender_output(inputs["Gender"]),"Age": user_age_out(inputs["Age"]),"Occupation": user_occupation_out(inputs["Occupation"]),}return tf.keras.Model(inputs=inputs, outputs=outputs)preprocess_layer = preprocess()model = DeepFMbase(dnn_units_size=[256, 32],preprocess_layer=preprocess_layer,)model.compile(loss=tf.keras.losses.binary_crossentropy,optimizer=tf.keras.optimizers.Adam(),metrics=[tf.keras.metrics.AUC(),tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),],)return model  # need wrapreturn create_model
# Define bob's basenet
def create_base_model_bob():# Create modeldef create_model():import tensorflow as tf# define preprocess layerdef preprocess():inputs = {"MovieID": tf.keras.Input(shape=(1,), dtype=tf.string),"Genres": tf.keras.Input(shape=(1,), dtype=tf.string),}movie_id_out = tf.keras.layers.Hashing(num_bins=NUM_MOVIES, output_mode="one_hot")movie_genres_out = tf.keras.layers.TextVectorization(output_mode='multi_hot', split="whitespace", vocabulary=GENRES_VOCAB)outputs = {"MovieID": movie_id_out(inputs["MovieID"]),"Genres": movie_genres_out(inputs["Genres"]),}return tf.keras.Model(inputs=inputs, outputs=outputs)preprocess_layer = preprocess()model = DeepFMbase(dnn_units_size=[256, 32],preprocess_layer=preprocess_layer,)model.compile(loss=tf.keras.losses.binary_crossentropy,optimizer=tf.keras.optimizers.Adam(),metrics=[tf.keras.metrics.AUC(),tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),],)return model  # need wrapreturn create_model

定义Fusenet

def create_fuse_model():# Create modeldef create_model():import tensorflow as tfmodel = DeepFMfuse(dnn_units_size=[256, 256, 32])model.compile(loss=tf.keras.losses.binary_crossentropy,optimizer=tf.keras.optimizers.Adam(),metrics=[tf.keras.metrics.AUC(),tf.keras.metrics.Precision(),tf.keras.metrics.Recall(),],)return modelreturn create_model
base_model_dict = {alice: create_base_model_alice(), bob: create_base_model_bob()}
model_fuse = create_fuse_model()
from secretflow.data.vertical import read_csv as v_read_csvvdf = v_read_csv({alice: "alice_ml1m.csv", bob: "bob_ml1m.csv"}, keys="ID", drop_keys="ID"
)
label = vdf["Rating"]data = vdf.drop(columns=["Rating", "Timestamp", "Title", "Zip-code"])
data["UserID"] = data["UserID"].astype("string")
data["MovieID"] = data["MovieID"].astype("string")sl_model = SLModel(base_model_dict=base_model_dict,device_y=bob,model_fuse=model_fuse,
)
history = sl_model.fit(data,label,epochs=5,batch_size=128,random_seed=1234,dataset_builder=data_builder_dict,
)

到这里,我们已经使用隐语提供的deepfm封装完成了movieLens数据集上的推荐任务训练。

总结

我们通过movieLens数据集上的推荐任务来演示了如何通过隐语来实现DeepFM。

1.下载并拆分数据集;

2.定义好数据处理的dataloader;

3.定义好数据预处理的preprocesslayer,定义好dnn结构,调用DeepFMBase,DeepFMFuse来进行模型定义;

4.使用SLModel进行训练,预测,评估即可。

这篇关于隐私计算实训营:SplitRec:当拆分学习遇上推荐系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146224

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听