图像分割分析效果2

2024-09-07 20:36
文章标签 分析 图像 分割 效果

本文主要是介绍图像分割分析效果2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这次加了结构化损失

# 训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915
 # dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816
# 加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191
# 其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息
model.evaluate(train_dataset)

# 验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617
 #  dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624
# 加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393
len(val_dataset)*BATCH_SIZE,验证集

经过最后的一番优化后

 模型在训练集上的表现,因为验证集和训练集不同,模型并没有训练验证集上数据

# 训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915
 # dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816
# 加了结构化损失后:avg_score: 0.8917 - dice: 0.9228 - iou: 0.8627 - loss: 0.1098 - mae: 0.0191
# 其实效果有提升,之前自定义的指标有问题,它返回的是最后一个批次的统计信息,现在返回的是整个数据集的平均信息
# 稍微修改了dropout后:avg_score: 0.9160 - dice: 0.9411 - iou: 0.8921 - loss: 0.2218 - mae: 0.0140
model.evaluate(train_dataset)

 

 

 

 

 

 

 

 

 

 

 

 

 

模型在训练集上的表现可以说相当好,再来看模型在验证集上的表现,模型从未拟合过验证集数据因为我不是用的随机拆分,也没重启内核

# 验证集504个样本,dice: 0.8096 - iou: 0.7138 - loss: 0.1267 - mae: 0.0429 - total: 0.7617
 #  dice: 0.8113 - iou: 0.7135 - loss: 0.1024 - mae: 0.0409 - total: 0.7624
# 加了结构化损失后:avg_score: 0.7687 - dice: 0.8189 - iou: 0.7242 - loss: 0.2894 - mae: 0.0393
# 稍微修改了dropout后:avg_score: 0.7939 - dice: 0.8403 - iou: 0.7524 - loss: 0.5245 - mae: 0.0322
len(val_dataset)*BATCH_SIZE

 

虽然这张图片真实掩码有半截身子的人 ,但是我还是觉得模型预测的很正确,半截身子的人不能当前景,应该只有没被裁剪的人当前景,因为这个数据集中很多裁剪的人当背景的

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于图像分割分析效果2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146093

相关文章

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实