【人工智能/机器学习/机器人】数学基础-学习笔记

2024-09-07 12:28

本文主要是介绍【人工智能/机器学习/机器人】数学基础-学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

函数

奇偶性:

  • 偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)     y轴对称
    f ( x ) = x 2 f(x)=x^2 f(x)=x2     f ( − x ) = ( − x ) 2 = x 2 = f ( x ) f(-x)=(-x)^2=x^2=f(x) f(x)=(x)2=x2=f(x)

  • 奇函数: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)  原点对称
    f ( x ) = x 3 f(x)=x^3 f(x)=x3     f ( − x ) = ( − x ) 3 = − x 3 = − f ( x ) f(-x)=(-x)^3=-x^3=-f(x) f(x)=(x)3=x3=f(x)

  • 周期性: f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)

  • 单调性:

  • 在这里插入图片描述

极限

数列

按照一定次数排列的一列数: u 1 , u 2 , u 3 , ⋅ ⋅ ⋅ , u n , ⋅ ⋅ ⋅ u_1,u_2,u_3,···,u_n,··· u1,u2,u3,⋅⋅⋅,un,⋅⋅⋅,其中 u n u_n un叫做通项

对于数列 { u n } \{u_n\} {un},如果当 n n n无限大时,其通项无限接近于一个参数 A A A
则称该数列以 A A A为极限或称数列收敛于 A A A,否则称数列为发散
lim ⁡ n → ∞ u n = A \lim\limits_ {n \to \infty}u_n=A nlimun=A ,或 u n → A ( n → ∞ ) u_n \to A (n \to \infty) unA(n)
lim ⁡ n → ∞ 1 3 n = 0 \lim\limits_{n \to \infty}{\frac 1{3^n}}=0 nlim3n1=0 lim ⁡ n → ∞ n n + 1 = 1 \lim\limits_{n \to \infty}{ \frac n{n+1}}=1 nlimn+1n=1 lim ⁡ n → ∞ 2 n \lim\limits_{n \to \infty}2^n nlim2n不存在

极限

符号表示:
x → ∞ x \to \infty x表示“当 ∣ x ∣ |x| x无限增大时”;
x → + ∞ x \to +\infty x+表示“当 x x x无限增大时”;
x → − ∞ x \to -\infty x表示“当 x x x无限减少时”;
x → x 0 x \to x_0 xx0表示“当 x x x x 0 x_0 x0的左右两侧无限接近于 x 0 x_0 x0时”;
x → x 0 + x \to x^+_0 xx0+表示“当 x x x x 0 x_0 x0的右侧无限接近于 x 0 x_0 x0时”;
x → x 0 − x \to x^-_0 xx0表示“当 x x x x 0 x_0 x0的左侧无限接近于 x 0 x_0 x0时”;

在这里插入图片描述

  • 函数在 x 0 x_0 x0的邻域内有定义, lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}f(x)=A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 ) f(x) \to A(x \to x_0) f(x)A(xx0)
    lim ⁡ x → 1 x 2 − 1 x − 1 = lim ⁡ x → 1 ( x − 1 ) ( x + 1 ) x − 1 = 2 \lim\limits_{x \to 1}{\frac {x^2-1}{x-1}}=\lim\limits_{x \to 1}{\frac {(x-1)(x+1)}{x-1}}=2 x1limx1x21=x1limx1(x1)(x+1)=2
  • 左右极限:函数在左半邻域 ( x 0 − δ , x 0 ) (x_0-\delta,x_0) (x0δ,x0)或右半邻域 ( x 0 , x 0 + δ ) (x_0,x_0+\delta) (x0,x0+δ)内有定义
    lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x \to x^+_0}f(x)=A xx0+limf(x)=A,或 f ( x ) → A ( x → x 0 + ) f(x) \to A(x \to x^+_0) f(x)A(xx0+) f ( x 0 + 0 ) = A f(x_0+0)=A f(x0+0)=A
    lim ⁡ x → x 0 − f ( x ) = A \lim\limits_{x \to x^-_0}f(x)=A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 − ) f(x) \to A(x \to x^-_0) f(x)A(xx0) f ( x 0 − 0 ) = A f(x_0-0)=A f(x00)=A

持续更新!!!!!

这篇关于【人工智能/机器学习/机器人】数学基础-学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145049

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col