2-1 opencv实战进阶系列 阈值编辑器

2024-09-07 06:44

本文主要是介绍2-1 opencv实战进阶系列 阈值编辑器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、不说废话,先上现象 

二、前言

三、方法详解

四、贴出完整代码


一、不说废话,先上现象 

二、前言

对图像的处理中,设置合适的掩膜、寻找多边形、颜色追踪等方法都需要预先设置好颜色的上阈值和下阈值,来从原图中分割出我们需要的部分。

然而,opencv并没有像openmv那样方便的阈值编辑器对原图进行处理,所以本文提供一个方便的方法,可以同时处理彩图RGB、HSV、灰度值的阈值。

三、方法详解

cv2.createTrackbar('Low R', 'RGB Threshold', 0, 255, lambda x: None)

  1. 第一个参数 ('Low R'): 这是滑动条的名称,它将显示在滑动条旁边,以便用户知道这个滑动条是用来调整什么的。在这个例子中,'Low R' 表示这是一个用于调整红色通道的最低阈值的滑动条。

  2. 第二个参数 ('RGB Threshold'): 这是滑动条将要被放置的窗口的名称。在这个例子中,滑动条将被放置在名为 'RGB Threshold' 的窗口中。

  3. 第三个参数 (0): 这是滑动条的初始位置。在这个例子中,滑动条从 0 开始。

  4. 第四个参数 (255): 这是滑动条的最大值。在这个例子中,滑动条的范围是从 0 到 255,这通常用于表示颜色值,因为颜色通道(如红色、绿色和蓝色)的值通常在 0 到 255 之间。

  5. 第五个参数 (lambda x: None): 这是一个回调函数,它在滑动条的值改变时被调用。在这个例子中,回调函数是一个空操作(lambda x: None),这意味着当滑动条的值改变时,不会执行任何操作。通常,你可以在这里放置一个函数调用来处理滑动条值的变化,例如重新计算图像的阈值或更新显示的图像。

lR = cv2.getTrackbarPos('Low R', 'RGB Threshold')

  1. 第一个参数 ('Low R'): 这是你想要获取当前位置的滑动条的名称。在这个例子中,'Low R' 指的是红色通道的最低阈值滑动条。

  2. 第二个参数 ('RGB Threshold'): 这是包含该滑动条的窗口的名称。这个参数确保你能够从正确的窗口中获取滑动条的位置。在这个例子中,'RGB Threshold' 是包含名为 'Low R' 的滑动条的窗口。

函数 cv2.getTrackbarPos 会返回一个整数,表示指定滑动条的当前位置。这个值可以在程序中用于根据用户的输入调整图像处理参数,例如,根据滑动条的位置来调整颜色阈值。

四、贴出完整代码

import cv2
import numpy as np# 读取图像
image = cv2.imread('test.png')
cv2.imshow('image', image)#cv2.cvtColor 操作在循环外完成,否则CPU占用率会很高
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 创建窗口
cv2.namedWindow('image')
cv2.namedWindow('RGB Threshold')
cv2.namedWindow('HSV Threshold')
cv2.namedWindow('Grayscale Threshold')# 创建轨道条(滑块)
cv2.createTrackbar('Low R', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High R', 'RGB Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low G', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High G', 'RGB Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low B', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High B', 'RGB Threshold', 255, 255, lambda x: None)cv2.createTrackbar('Low H', 'HSV Threshold', 0, 179, lambda x: None)  # HSV色调范围是0-179
cv2.createTrackbar('High H', 'HSV Threshold', 179, 179, lambda x: None)
cv2.createTrackbar('Low S', 'HSV Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High S', 'HSV Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low V', 'HSV Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High V', 'HSV Threshold', 255, 255, lambda x: None)cv2.createTrackbar('Low Gray', 'Grayscale Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High Gray', 'Grayscale Threshold', 255, 255, lambda x: None)while True:# 读取滑轨的值lR = cv2.getTrackbarPos('Low R', 'RGB Threshold')hR = cv2.getTrackbarPos('High R', 'RGB Threshold')lG = cv2.getTrackbarPos('Low G', 'RGB Threshold')hG = cv2.getTrackbarPos('High G', 'RGB Threshold')lB = cv2.getTrackbarPos('Low B', 'RGB Threshold')hB = cv2.getTrackbarPos('High B', 'RGB Threshold')lH = cv2.getTrackbarPos('Low H', 'HSV Threshold')hH = cv2.getTrackbarPos('High H', 'HSV Threshold')lS = cv2.getTrackbarPos('Low S', 'HSV Threshold')hS = cv2.getTrackbarPos('High S', 'HSV Threshold')lV = cv2.getTrackbarPos('Low V', 'HSV Threshold')hV = cv2.getTrackbarPos('High V', 'HSV Threshold')lGray = cv2.getTrackbarPos('Low Gray', 'Grayscale Threshold')hGray = cv2.getTrackbarPos('High Gray', 'Grayscale Threshold')# 应用阈值lower_rgb = np.array([lB, lG, lR])upper_rgb = np.array([hB, hG, hR])mask_rgb = cv2.inRange(image, lower_rgb, upper_rgb)lower_hsv = np.array([lH, lS, lV])upper_hsv = np.array([hH, hS, hV])mask_hsv = cv2.inRange(hsv, lower_hsv, upper_hsv)mask_gray = cv2.inRange(gray, lGray, hGray)# 显示结果cv2.imshow('RGB Threshold', mask_rgb)cv2.imshow('HSV Threshold', mask_hsv)cv2.imshow('Grayscale Threshold', mask_gray)    # 按 'q' 退出循环if cv2.waitKey(1) & 0xFF == ord('q'):breakcv2.destroyAllWindows()

持续更新中……

这篇关于2-1 opencv实战进阶系列 阈值编辑器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144351

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实