2-1 opencv实战进阶系列 阈值编辑器

2024-09-07 06:44

本文主要是介绍2-1 opencv实战进阶系列 阈值编辑器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、不说废话,先上现象 

二、前言

三、方法详解

四、贴出完整代码


一、不说废话,先上现象 

二、前言

对图像的处理中,设置合适的掩膜、寻找多边形、颜色追踪等方法都需要预先设置好颜色的上阈值和下阈值,来从原图中分割出我们需要的部分。

然而,opencv并没有像openmv那样方便的阈值编辑器对原图进行处理,所以本文提供一个方便的方法,可以同时处理彩图RGB、HSV、灰度值的阈值。

三、方法详解

cv2.createTrackbar('Low R', 'RGB Threshold', 0, 255, lambda x: None)

  1. 第一个参数 ('Low R'): 这是滑动条的名称,它将显示在滑动条旁边,以便用户知道这个滑动条是用来调整什么的。在这个例子中,'Low R' 表示这是一个用于调整红色通道的最低阈值的滑动条。

  2. 第二个参数 ('RGB Threshold'): 这是滑动条将要被放置的窗口的名称。在这个例子中,滑动条将被放置在名为 'RGB Threshold' 的窗口中。

  3. 第三个参数 (0): 这是滑动条的初始位置。在这个例子中,滑动条从 0 开始。

  4. 第四个参数 (255): 这是滑动条的最大值。在这个例子中,滑动条的范围是从 0 到 255,这通常用于表示颜色值,因为颜色通道(如红色、绿色和蓝色)的值通常在 0 到 255 之间。

  5. 第五个参数 (lambda x: None): 这是一个回调函数,它在滑动条的值改变时被调用。在这个例子中,回调函数是一个空操作(lambda x: None),这意味着当滑动条的值改变时,不会执行任何操作。通常,你可以在这里放置一个函数调用来处理滑动条值的变化,例如重新计算图像的阈值或更新显示的图像。

lR = cv2.getTrackbarPos('Low R', 'RGB Threshold')

  1. 第一个参数 ('Low R'): 这是你想要获取当前位置的滑动条的名称。在这个例子中,'Low R' 指的是红色通道的最低阈值滑动条。

  2. 第二个参数 ('RGB Threshold'): 这是包含该滑动条的窗口的名称。这个参数确保你能够从正确的窗口中获取滑动条的位置。在这个例子中,'RGB Threshold' 是包含名为 'Low R' 的滑动条的窗口。

函数 cv2.getTrackbarPos 会返回一个整数,表示指定滑动条的当前位置。这个值可以在程序中用于根据用户的输入调整图像处理参数,例如,根据滑动条的位置来调整颜色阈值。

四、贴出完整代码

import cv2
import numpy as np# 读取图像
image = cv2.imread('test.png')
cv2.imshow('image', image)#cv2.cvtColor 操作在循环外完成,否则CPU占用率会很高
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 创建窗口
cv2.namedWindow('image')
cv2.namedWindow('RGB Threshold')
cv2.namedWindow('HSV Threshold')
cv2.namedWindow('Grayscale Threshold')# 创建轨道条(滑块)
cv2.createTrackbar('Low R', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High R', 'RGB Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low G', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High G', 'RGB Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low B', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High B', 'RGB Threshold', 255, 255, lambda x: None)cv2.createTrackbar('Low H', 'HSV Threshold', 0, 179, lambda x: None)  # HSV色调范围是0-179
cv2.createTrackbar('High H', 'HSV Threshold', 179, 179, lambda x: None)
cv2.createTrackbar('Low S', 'HSV Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High S', 'HSV Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low V', 'HSV Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High V', 'HSV Threshold', 255, 255, lambda x: None)cv2.createTrackbar('Low Gray', 'Grayscale Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High Gray', 'Grayscale Threshold', 255, 255, lambda x: None)while True:# 读取滑轨的值lR = cv2.getTrackbarPos('Low R', 'RGB Threshold')hR = cv2.getTrackbarPos('High R', 'RGB Threshold')lG = cv2.getTrackbarPos('Low G', 'RGB Threshold')hG = cv2.getTrackbarPos('High G', 'RGB Threshold')lB = cv2.getTrackbarPos('Low B', 'RGB Threshold')hB = cv2.getTrackbarPos('High B', 'RGB Threshold')lH = cv2.getTrackbarPos('Low H', 'HSV Threshold')hH = cv2.getTrackbarPos('High H', 'HSV Threshold')lS = cv2.getTrackbarPos('Low S', 'HSV Threshold')hS = cv2.getTrackbarPos('High S', 'HSV Threshold')lV = cv2.getTrackbarPos('Low V', 'HSV Threshold')hV = cv2.getTrackbarPos('High V', 'HSV Threshold')lGray = cv2.getTrackbarPos('Low Gray', 'Grayscale Threshold')hGray = cv2.getTrackbarPos('High Gray', 'Grayscale Threshold')# 应用阈值lower_rgb = np.array([lB, lG, lR])upper_rgb = np.array([hB, hG, hR])mask_rgb = cv2.inRange(image, lower_rgb, upper_rgb)lower_hsv = np.array([lH, lS, lV])upper_hsv = np.array([hH, hS, hV])mask_hsv = cv2.inRange(hsv, lower_hsv, upper_hsv)mask_gray = cv2.inRange(gray, lGray, hGray)# 显示结果cv2.imshow('RGB Threshold', mask_rgb)cv2.imshow('HSV Threshold', mask_hsv)cv2.imshow('Grayscale Threshold', mask_gray)    # 按 'q' 退出循环if cv2.waitKey(1) & 0xFF == ord('q'):breakcv2.destroyAllWindows()

持续更新中……

这篇关于2-1 opencv实战进阶系列 阈值编辑器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144351

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读