2-1 opencv实战进阶系列 阈值编辑器

2024-09-07 06:44

本文主要是介绍2-1 opencv实战进阶系列 阈值编辑器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、不说废话,先上现象 

二、前言

三、方法详解

四、贴出完整代码


一、不说废话,先上现象 

二、前言

对图像的处理中,设置合适的掩膜、寻找多边形、颜色追踪等方法都需要预先设置好颜色的上阈值和下阈值,来从原图中分割出我们需要的部分。

然而,opencv并没有像openmv那样方便的阈值编辑器对原图进行处理,所以本文提供一个方便的方法,可以同时处理彩图RGB、HSV、灰度值的阈值。

三、方法详解

cv2.createTrackbar('Low R', 'RGB Threshold', 0, 255, lambda x: None)

  1. 第一个参数 ('Low R'): 这是滑动条的名称,它将显示在滑动条旁边,以便用户知道这个滑动条是用来调整什么的。在这个例子中,'Low R' 表示这是一个用于调整红色通道的最低阈值的滑动条。

  2. 第二个参数 ('RGB Threshold'): 这是滑动条将要被放置的窗口的名称。在这个例子中,滑动条将被放置在名为 'RGB Threshold' 的窗口中。

  3. 第三个参数 (0): 这是滑动条的初始位置。在这个例子中,滑动条从 0 开始。

  4. 第四个参数 (255): 这是滑动条的最大值。在这个例子中,滑动条的范围是从 0 到 255,这通常用于表示颜色值,因为颜色通道(如红色、绿色和蓝色)的值通常在 0 到 255 之间。

  5. 第五个参数 (lambda x: None): 这是一个回调函数,它在滑动条的值改变时被调用。在这个例子中,回调函数是一个空操作(lambda x: None),这意味着当滑动条的值改变时,不会执行任何操作。通常,你可以在这里放置一个函数调用来处理滑动条值的变化,例如重新计算图像的阈值或更新显示的图像。

lR = cv2.getTrackbarPos('Low R', 'RGB Threshold')

  1. 第一个参数 ('Low R'): 这是你想要获取当前位置的滑动条的名称。在这个例子中,'Low R' 指的是红色通道的最低阈值滑动条。

  2. 第二个参数 ('RGB Threshold'): 这是包含该滑动条的窗口的名称。这个参数确保你能够从正确的窗口中获取滑动条的位置。在这个例子中,'RGB Threshold' 是包含名为 'Low R' 的滑动条的窗口。

函数 cv2.getTrackbarPos 会返回一个整数,表示指定滑动条的当前位置。这个值可以在程序中用于根据用户的输入调整图像处理参数,例如,根据滑动条的位置来调整颜色阈值。

四、贴出完整代码

import cv2
import numpy as np# 读取图像
image = cv2.imread('test.png')
cv2.imshow('image', image)#cv2.cvtColor 操作在循环外完成,否则CPU占用率会很高
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 创建窗口
cv2.namedWindow('image')
cv2.namedWindow('RGB Threshold')
cv2.namedWindow('HSV Threshold')
cv2.namedWindow('Grayscale Threshold')# 创建轨道条(滑块)
cv2.createTrackbar('Low R', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High R', 'RGB Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low G', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High G', 'RGB Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low B', 'RGB Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High B', 'RGB Threshold', 255, 255, lambda x: None)cv2.createTrackbar('Low H', 'HSV Threshold', 0, 179, lambda x: None)  # HSV色调范围是0-179
cv2.createTrackbar('High H', 'HSV Threshold', 179, 179, lambda x: None)
cv2.createTrackbar('Low S', 'HSV Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High S', 'HSV Threshold', 255, 255, lambda x: None)
cv2.createTrackbar('Low V', 'HSV Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High V', 'HSV Threshold', 255, 255, lambda x: None)cv2.createTrackbar('Low Gray', 'Grayscale Threshold', 0, 255, lambda x: None)
cv2.createTrackbar('High Gray', 'Grayscale Threshold', 255, 255, lambda x: None)while True:# 读取滑轨的值lR = cv2.getTrackbarPos('Low R', 'RGB Threshold')hR = cv2.getTrackbarPos('High R', 'RGB Threshold')lG = cv2.getTrackbarPos('Low G', 'RGB Threshold')hG = cv2.getTrackbarPos('High G', 'RGB Threshold')lB = cv2.getTrackbarPos('Low B', 'RGB Threshold')hB = cv2.getTrackbarPos('High B', 'RGB Threshold')lH = cv2.getTrackbarPos('Low H', 'HSV Threshold')hH = cv2.getTrackbarPos('High H', 'HSV Threshold')lS = cv2.getTrackbarPos('Low S', 'HSV Threshold')hS = cv2.getTrackbarPos('High S', 'HSV Threshold')lV = cv2.getTrackbarPos('Low V', 'HSV Threshold')hV = cv2.getTrackbarPos('High V', 'HSV Threshold')lGray = cv2.getTrackbarPos('Low Gray', 'Grayscale Threshold')hGray = cv2.getTrackbarPos('High Gray', 'Grayscale Threshold')# 应用阈值lower_rgb = np.array([lB, lG, lR])upper_rgb = np.array([hB, hG, hR])mask_rgb = cv2.inRange(image, lower_rgb, upper_rgb)lower_hsv = np.array([lH, lS, lV])upper_hsv = np.array([hH, hS, hV])mask_hsv = cv2.inRange(hsv, lower_hsv, upper_hsv)mask_gray = cv2.inRange(gray, lGray, hGray)# 显示结果cv2.imshow('RGB Threshold', mask_rgb)cv2.imshow('HSV Threshold', mask_hsv)cv2.imshow('Grayscale Threshold', mask_gray)    # 按 'q' 退出循环if cv2.waitKey(1) & 0xFF == ord('q'):breakcv2.destroyAllWindows()

持续更新中……

这篇关于2-1 opencv实战进阶系列 阈值编辑器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144351

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

[MySQL表的增删改查-进阶]

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 💻💻💻数据库约束 🔭🔭🔭约束类型 not null: 指示某列不能存储 NULL 值unique: 保证某列的每行必须有唯一的值default: 规定没有给列赋值时的默认值.primary key:

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10