【用户价值分析 RFM模型】用户价值分析

2024-09-07 06:32
文章标签 分析 模型 用户 价值 rfm

本文主要是介绍【用户价值分析 RFM模型】用户价值分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RFM模型是衡量客户价值和客户创利能力的重要工具和手段。RFM分析模型主要由三个指标组成,下面对这三个指标的定义和作用做下简单解释:

1、最近一次消费(Recency)
最近一次消费意指用户上一次购买的时间,理论上,上一次消费时间越近的顾客应该是比较好的顾客,对提供即时的商品或是服务也最有可能会有反应。因为最近一次消费指标定义的是一个时间段,并且与当前时间相关,因此是一直在变动的。最近一次消费对营销来说是一个重要指标,涉及吸引客户,保持客户,并赢得客户的忠诚度。
2、消费频率(Frequency)
消费频率是顾客在一定时间段内的消费次数。最常购买的消费者,忠诚度也就最高,增加顾客购买的次数意味着从竞争对手处偷取市场占有率,由别人的手中赚取营业额。
根据这个指标,我们又把客户分成五等分,这个五等分分析相当于是一个“忠诚度的阶梯”(loyalty ladder),其诀窍在于让消费者一直顺着阶梯往上爬,把销售想像成是要将两次购买的顾客往上推成三次购买的顾客,把一次购买者变成两次的。
3、消费金额(Monetary)
消费金额是对购彩产能的最直接的衡量指标,也可以验证“帕雷托法则”(Pareto’s Law)——公司80%的收入来自20%的顾客。

FRM就是根据客户活跃度和交易金额贡献,进行客户价值细分的一种方法。

RFM算法步骤:
1.计算RFM各项分值
R_S,距离当前日期越近,得分越高,最高7分,最低1分,按实际数据分布情况切割依次从高到低取分数。
F_S,交易频率越高,得分越高,最高7分,最低1分,按实际数据分布情况切割依次从高到低取分数。
M_S,交易金额越高,得分越高,最高7分,最低1分,按实际数据分布情况切割依次从高到低取分数。

2.归总RFM分值
RFM赋予权重(目前权重采用R:F:M = 1:1:1),权重乘以分数归总RFM分值。这个总RFM分值作为衡量用户价值的关键指标。公式如下:

3.根据RFM分值对客户分类

# encoding: utf-8"""
function:RFM用户价值分析分成5类
author:dongli
update_date:2018-06-07
"""# 导入包
import pandas as pd
######################################################写入excel设置问题#########################################
import xlsxwriter
# 定义RFM函数
def RFM(aggData):""":param aggData: 输入数据集,数据集字段要包含recency,frequency,monetary等三个字段:return:返回数据集结果"""# 计算R_Sbins = aggData.recency.quantile(q=[0, 0.28, 0.38, 0.46, 0.53, 0.57, 0.77, 1], interpolation='nearest')bins[0] = 0labels = [7, 6, 5, 4, 3, 2, 1]R_S = pd.cut(aggData.recency, bins, labels=labels)# 计算F_Sbins = aggData.frequency.quantile(q=[0, 0.29, 0.45, 0.60, 0.71, 0.76, 0.90, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]F_S = pd.cut(aggData.frequency, bins, labels=labels)# 计算M_Sbins = aggData.monetary.quantile(q=[0, 0.20, 0.26, 0.45, 0.55, 0.76, 0.85, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]M_S = pd.cut(aggData.monetary, bins, labels=labels)# 赋值aggData['R_S'] = R_SaggData['F_S'] = F_SaggData['M_S'] = M_S# 计算FRM值aggData['RFM'] = R_S.astype(int)*1 + F_S.astype(int)*1 + M_S.astype(int)*1# 根据RFM分值对客户分类#分五类bins = aggData.RFM.quantile(q=[0, 0.2, 0.4, 0.6, 0.8, 1],interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5]aggData['level'] = pd.cut(aggData.RFM,bins, labels=labels)# 分八类# bins = aggData.RFM.quantile(q=[0, 0.125, 0.25, 0.375, 0.5,0.625, 0.75, 0.875, 1],interpolation='nearest')# bins[0] = 0# labels = [1, 2, 3, 4, 5, 6, 7, 8]# aggData['level'] = pd.cut(aggData.RFM,bins, labels=labels )return aggData# 主函数
if __name__ == '__main__':# 读取数据aggData = pd.read_csv('C:\\Users\\xiaohu\\Desktop\\月刊数据\\4月份用户价值数据.csv')# 调用模型函数result=RFM(aggData)# 打印结果print(result)# 计算每个类别的数据量c1=list(result["level"].value_counts())# 计算每个类别所占的百分比c2 = list(result["level"].value_counts()/len(result)*100)c3=(list(map(lambda x:str(round(x,3))+"%",c2)))c=pd.DataFrame({"level":range(1,len(c1)+1),"数量":c1,"百分比":c3})print(c)# 写出csvresult.to_csv('C:\\Users\\xiaohu\\Desktop\\月刊数据\\result5_50_四月份.csv',index=False)# ## 先写出excel# workbook = xlsxwriter.Workbook("C:\\Users\\xiaohu\\Desktop\\月刊数据\\result_RFM.xlsx",options={'strings_to_urls': False})## format = workbook.add_format()# format = workbook.add_format()# format.set_border(1)# format_title = workbook.add_format()# format_title.set_border(1)# format_title.set_bg_color('#cccccc')# format_title.set_align('center')# format_title.set_bold()# format_ave = workbook.add_format()# format_ave.set_border(1)# format_ave.set_num_format('0')## data_format = workbook.add_format()# data_format.set_num_format('yyyy-mm-dd HH:MM:SS')# data_format.set_border(1)## worksheet2 = workbook.add_worksheet('用户价值')# title2 = [u'user_id', u'recency', u'frequency', u'monetary',u'R_S',u'F_S',u'M_S',u'RFM', u'level']## worksheet2.write_row('A1', title2, format_title)# worksheet2.write_column('A2:', result.iloc[:, 0], format_ave)# worksheet2.write_column('B2:', result.iloc[:, 1], format)# worksheet2.write_column('C2', result.iloc[:, 2], format)# worksheet2.write_column('D2', result.iloc[:, 3], format)# worksheet2.write_column('E2', result.iloc[:, 4], format)# worksheet2.write_column('F2', result.iloc[:, 5], format)# worksheet2.write_column('G2', result.iloc[:, 6], format)# worksheet2.write_column('H2', result.iloc[:, 7], format)# worksheet2.write_column('I2', result.iloc[:, 8], format)## workbook.close()#

RFM+kmeans算法

# encoding: utf-8
"""
function:RFM用户价值分析+kmeans算法自动划分
author:dongli
update_date:2018-05-09
"""# 导入包
from __future__ import  division
import pandas as pd
from sklearn.cluster import KMeans######################################python画图显示中文参数设置####################################
##########设置中文显示#################
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
font_size =11 # 字体大小
fig_size = (8, 6) # 图表大小
# 更新字体大小
mpl.rcParams['font.size'] = font_size
# 更新图表大小
mpl.rcParams['figure.figsize'] = fig_size
#################################################################################################### 定义RFM函数
def RFM(aggData):""":param aggData: 输入数据集,数据集字段要包含recency,frequency,monetary等三个字段:return:返回数据集结果"""# 计算R_Sbins = aggData.recency.quantile(q=[0, 0.31, 0.38, 0.46, 0.53, 0.57, 0.77, 1], interpolation='nearest')bins[0] = 0labels = [7, 6, 5, 4, 3, 2, 1]R_S = pd.cut(aggData.recency, bins, labels=labels)# 计算F_Sbins = aggData.frequency.quantile(q=[0, 0.29, 0.45, 0.60, 0.71, 0.76, 0.90, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]F_S = pd.cut(aggData.frequency, bins, labels=labels)# 计算M_Sbins = aggData.monetary.quantile(q=[0, 0.20, 0.26, 0.45, 0.55, 0.76, 0.85, 1], interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5, 6, 7]M_S = pd.cut(aggData.monetary, bins, labels=labels)# 赋值aggData['R_S'] = R_SaggData['F_S'] = F_SaggData['M_S'] = M_S# 计算FRM值aggData['RFM'] = R_S.astype(int) + F_S.astype(int) + M_S.astype(int)#分五类bins = aggData.RFM.quantile(q=[0, 0.2, 0.4, 0.6, 0.8, 1],interpolation='nearest')bins[0] = 0labels = [1, 2, 3, 4, 5]aggData['level'] = pd.cut(aggData.RFM,bins, labels=labels)return aggData# 读取数据
aggData = pd.read_csv('C:\\Users\\xiaohu\\Desktop\\用户价值分析\\用户价值分析RFM模型\\source\\RFM_Data_50.csv')
# print(aggData)aggData2=RFM(aggData)
print(aggData2)# 选择recency,frequency,monetary这三列
data=aggData2.loc[:,['recency','frequency','monetary']]print(data)# 定义数据标准化函数 Min-max 标准化
def Normalization(df):return df.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)))# 调用函数进行数据标准化(0-1)之间
zsredfile=Normalization(data)# 对列进行重命名
names = ['ZR','ZF','ZM']
zsredfile.columns = namesprint(zsredfile)##########################################选择最佳的K值########################################################"""
一般我们可以 通过迭代的方式选出合适的聚类个数 ,即让k值从1到K依次执行一遍,
再查看每一次k值对应的簇内离差平方和之和的变化,
如果变化幅度突然由大转小时,那个k值就是我们选择的合理个数
"""
K = range(1,15)
GSSE = []
for k in K:print(K)SSE = []kmeans = KMeans(n_clusters=k, random_state=10)kmeans.fit(zsredfile)labels = kmeans.labels_centers = kmeans.cluster_centers_for label in set(labels):SSE.append(np.sum(np.sum((zsredfile[['ZR', 'ZF','ZM']].loc[labels == label,] - centers[label, :]) ** 2)))GSSE.append(np.sum(SSE))# 绘制K的个数与GSSE的关系
plt.plot(K, GSSE, 'b*-')plt.xlabel('聚类个数')plt.ylabel('簇内离差平方和')plt.title('选择最优的聚类个数')plt.show()####################################################################################################################################选择最优的聚类个数为5
seed(123)
#调用sklearn的库函数
num_clusters = 5
kmeans = KMeans(n_clusters=num_clusters, random_state=1)
kmeans.fit(zsredfile)# 聚类结果标签
data['cluster'] = kmeans.labels_
# 聚类中心
centers = kmeans.cluster_centers_cluster_center = pd.DataFrame(kmeans.cluster_centers_)
# 绘制散点图
plt.scatter(x = zsredfile.iloc[:,0], y = zsredfile.iloc[:,1], c = data['cluster'], s=50, cmap='rainbow')
plt.scatter(centers[:,0], centers[:,1], c='k', marker = '*', s = 180)
plt.xlabel('ZR')
plt.ylabel('ZF')
plt.title('聚类效果图')
# 图形显示
plt.show()# # 查看RFM模型8个类别中的用户数量以及占比多少result=dataaggData2['cluster']=result["cluster"]
# 计算每个类别的数据量c1 = list(result["cluster"].value_counts())# 计算每个类别所占的百分比c2 = list(result["cluster"].value_counts() / len(result) * 100)c3 = (list(map(lambda x: str(round(x, 3)) + "%", c2)))c = pd.DataFrame({"level": range(1, len(c1) + 1), "数量": c1, "百分比": c3})print(c)# 写出csvaggData2.to_csv('C:\\Users\\xiaohu\\Desktop\\用户价值分析\\东篱最终项目\\【修改版】用户价值分析项目--东篱\\RFM+K-Means算法对公司客户价值自动划分--东篱\\resource\\python_result_kmeans_50.csv', index=False)cluster_center.to_csv('C:\\Users\\xiaohu\\Desktop\\用户价值分析\\东篱最终项目\\【修改版】用户价值分析项目--东篱\\RFM+K-Means算法对公司客户价值自动划分--东篱\\resource\\cluster_center.csv')

RFM+层次聚类

# -*- coding:utf-8 -*-#######################################
#加载相关库
#######################################
import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn.cluster import Birch
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.externals import joblib
import time
import datetime#######################################
#加载数据集及提取数列
#######################################customdata = pd.read_csv(r'C:\\Users\\xiaohu\\Desktop\\RFM\\out_custom_label.csv')new_custom_data = customdata[["R_S","F_S","M_S"]]new_custom_data = new_custom_data.astype(np.float32)
new_custom_data = new_custom_data.values#######################################
#数据标准化
#######################################new_custom_data = StandardScaler().fit_transform(new_custom_data)#######################################
#模型训练
#######################################Birch_model = Birch(threshold=0.85, branching_factor=500,n_clusters=None,compute_labels=True, copy=True).fit(new_custom_data)#######################################
#提取分类结果
#######################################label = Birch_model.labels_#print ("Calinski-Harabasz Score", metrics.calinski_harabaz_score(new_custom_data, Birch_model))label = pd.DataFrame(label)label.columns = ['cluster.label']outresult = pd.concat([customdata, label], axis = 1)cluster_center = pd.DataFrame(Birch_model.subcluster_centers_)
n_clusters = np.unique(label).size
print("n_clusters : %d" % n_clusters)#######################################
#结果输出
#######################################outresult.to_csv('C:\\Users\\xiaohu\\Desktop\\RFM\\birch_outresult.csv')
cluster_center.to_csv('C:\\Users\\xiaohu\\Desktop\\RFM\\cluster_center.csv')

这篇关于【用户价值分析 RFM模型】用户价值分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144324

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S