【基础算法总结】双指针

2024-09-07 04:52
文章标签 算法 基础 指针 总结

本文主要是介绍【基础算法总结】双指针,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一,双指针算法介绍
  • 二,算法原理和代码实现
    • 283.移动零
    • 1089.复写零
    • 202.快乐数
    • 11.盛最多水的容器
    • 611.有效三角形的个数
    • LRC179.和为s的两个数
    • 15.三数之和
    • 18.四数之和
  • 三,算法总结

一,双指针算法介绍

双指针算法是基础算法之一,一般用于涉及数组分块/数组划分这类问题 。这里的"指针"是利用数组下标或是一个数来充当的

在遍历过程中,两个指针的位置:
cur:从左往右扫描数组,遍历数组
dest:指向已处理的区间内,非0元素的最后一个位置。如下图
在这里插入图片描述
所以两个指针把数组分成了三个区间
在这里插入图片描述

二,算法原理和代码实现

283.移动零

在这里插入图片描述

在这里插入图片描述

算法原理:

我们也是定义两个变量 cur 和 dest,根据上面介绍的两个指针的位置初始化 cur = 0, dest = -1

在 cur 从前往后遍历的过程中,无非两种情况
1. 遇到0元素:cur++
2. 遇到非0元素:先swap(dest+1, cur), 再cur++, dest++

代码实现:

class Solution 
{
public:void moveZeroes(vector<int>& nums) {for(int cur = 0, dest = -1; cur < nums.size(); ){if(nums[cur] == 0) cur++;else swap(nums[dest+1], nums[cur]), cur++, dest++;}}
};

1089.复写零

在这里插入图片描述
在这里插入图片描述

算法原理:

这道题看起来简单,但是有很多坑,很多细节。我们使用双指针先在草稿纸上模拟,不难发现从前往后复写是不行的,会覆盖后面的数据。但是要如何从后往前复写呢,起始位置怎么确定

所以解决这个题有两个步骤:

1. 先找到最后一个复写的数
这一步骤也要用双指针算法:
在这里插入图片描述
当走完这个双指针,此时 cur 指向的数就是最后一个要复写的数,dest 指向的位置就是开始复写的第一个位置
2. 再从后往前进行复写操作
在 cur 从后往前遍历的过程中,无非两种情况:
(1) 遇到0元素:dest向前复写两个0,cur–,dest -= 2
(2) 遇到非0元素:先arr[dest] = arr[cur], 再cur++, dest++

细节/技巧问题:

(1) 在第一步的第三小步中一定要先判断 dest 是否已经结束
(2) 还要处理一种特殊情况:[1,0,2,3,0,4]。根据第一步的双指针,此时dest会越界,就要做特殊处理当 dest == n 时,直接把 arr[n-1] = 0, cur–, dest -= 2

代码实现:

class Solution
{
public:void duplicateZeros(vector<int>& arr){// 找到最后一个要复写的位置int cur = 0, dest = -1, n = arr.size();while (cur < n){if (arr[cur]) dest++;else dest += 2;if (dest >= n - 1) break;cur++; // 注意每次++之前都要先判断dest是否越界}// 处理特殊情况if (dest == n) arr[n - 1] = 0, cur--, dest -= 2;// 从后往前开始复写操作while (cur >= 0){if (arr[cur]) arr[dest--] = arr[cur--];else{arr[dest] = 0, arr[dest - 1] = 0;dest -= 2;cur--;}}}
};

下面是一开始我写的错误代码,以示警戒

class Solution
{
public:void duplicateZeros(vector<int>& arr){// 先找到最后一个要复写的数int n = arr.size();int cur = 0, dest = -1;for (; dest < n - 1;){if (arr[cur] != 0) dest++;else dest += 2;if (dest != n - 1)cur++;}// 处理边界情况if (dest == n) arr[n - 1] = 0, cur--, dest -= 2;// 从后往前完成复写操作for (; cur >= 0 && dest >= 0; ){if (arr[cur] != 0) arr[dest] = arr[cur], dest--;else arr[dest] = 0, arr[dest - 1] = 0, dest -= 2;cur--;}}
};

202.快乐数

在这里插入图片描述

在这里插入图片描述

算法原理:

首先来理解题目
在这里插入图片描述
所以这道题可以抽象成另类的 “链表是否带环问题”只不过这道题是一定带环的,只要根据环内的数进行判断即可

使用经典的快慢双指针算法
(1) 定义快慢指针
(2) 慢指针每次向后走一步,快指针向后走两步
(3) 判断相遇时候的值即可

拓展:为什么这个题一定成环?

使用鸽巢原理证明
在这里插入图片描述

细节/技巧问题:

(1) 这题的双指针不再是数组下标,而是一个数
(2) 在进入第一次循环时,先让 fast 指向第二个数,不然进不了循环

代码实现:

class Solution 
{
public:bool isHappy(int n) {int slow = n, fast = mypow(n);while(slow != fast){slow = mypow(slow);fast = mypow(mypow(fast));}if(slow == 1)return true;elsereturn false;}int mypow(int n){int sum = 0;while(n){int a = n % 10;n /= 10;sum += a*a;}return sum;}
};

11.盛最多水的容器

在这里插入图片描述
在这里插入图片描述

算法原理:

解法1:暴力枚举,O(N*N)。这应该是大家心中第一个闪过的想法,就是使用两层for循环计算出全部体积,再求出最大值。但是这个解法超时。

解法2:利用单调性,使用双指针,O(N)
首先观察一个规律:
我们固定一个数,再向外枚举,会出现下面的情况,结果都是缩小,就可以把这个数直接抹去,避免无用枚举
在这里插入图片描述
所以可以把这个规律推广到全部数据:
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/a1dee81bedce4fab936c08ca8ba7f279.png
定义两个指针指向开头和结尾,此时可以计算出一个体积,根据上面的规律把较小的那个高度直接舍去,指针向里缩,继续计算体积…,直到两个指针相遇,统计出最大体积

细节/技巧问题:

体积= 高度 * 宽度。根据木桶原理,高度是小的那个,而宽度是两个下标相减

代码实现:

class Solution 
{
public:int maxArea(vector<int>& height) {int cur1 = 0, cur2 = height.size() -1;int maxV = 0;while(cur1 <= cur2){int H = min(height[cur1], height[cur2]);maxV = max(maxV, (cur2 - cur1) * H);// 利用单调性if(height[cur1] < height[cur2]) cur1++;else cur2--;}return maxV;}
};

611.有效三角形的个数

在这里插入图片描述
在这里插入图片描述

算法原理:

首先补充一个数学知识,只要一次判断,得出是否能构成三角形

若a <= b <= c 且 a +b > c,则可以构成三角形
所以可以得出一个优化:先把数组排序,O(N*logN)

数组排完序后

解法1:暴力枚举,O(N*logN + N^3),三层for循环,绝对超时。

解法2:利用单调性,使用双指针算法,O(N*logN + N^2)
(1) 先用c固定最大的元素,定义left 和right分别指向第一个元素,c的下一个元素。
(2) 若nums[left] + nums[right] > nums[c],由于left和 right之间的数都比 nums[left] 大,与 nums[right] 相加后一定大于c,构成三角形了,就不要一个个枚举了,直接right- -
(3) 此时三角形个数 = right - left
(4) 若nums[left] + nums[right] <= nums[c],由于left和 right之间的数都比 nums[right] 小,与 nums[left] 相加后一定小于c,也不要一个个枚举了,直接left++
(5) 以上是走完一趟的个数,再c–,固定下一个数
在这里插入图片描述

代码实现:

class Solution 
{
public:int triangleNumber(vector<int>& nums) {// 排序sort(nums.begin(), nums.end());int n = nums.size();int ret = 0; // 记录个数for(int c = n-1; c >= 2; c--){int left = 0, right = c - 1;while(left < right){if(nums[left] + nums[right] > nums[c]){ret += right - left;right--;} else left++;}}return ret;}
};

LRC179.和为s的两个数

在这里插入图片描述
在这里插入图片描述

算法原理:

解法1:暴力枚举,两层for循环,O(N^2),绝对超时。没有好好利用单调递增这个特性!!

解法2:和上一题的解法2类似,也是利用单调性和双指针算法,O(N)
在这里插入图片描述

细节/技巧问题:

找到数对后就直接 break 结束循环

代码实现:

class Solution 
{
public:vector<int> twoSum(vector<int>& price, int target) {vector<int> ret;int left = 0, right = price.size() - 1;while(left < right){int sum = price[left] + price[right];if(sum > target) right--;else if(sum < target) left++;else {ret.push_back(price[left]); ret.push_back(price[right]);break;}}return ret;}
};

15.三数之和

在这里插入图片描述
在这里插入图片描述

算法原理:

解法1:排序+暴力枚举+利用set去重,O(N^3).

解法2:排序+双指针,O(N^2).
这道题其实是上一题的进阶版,首先排序,再固定一个数 a,在该数后面的区间内使用双指针算法快速的找到两个数的和是 -a
在这里插入图片描述

难点/细节/技巧:

这道题的算法不难想,难的是保证不重不漏

(1) 去重操作有两个方面:一是找到一种结果后,left 和 right 指针要跳过重复元素,二是当使用完一次双指针后,i 也需要跳过重复元素,此时要注意越界
(2) 还有一个小优化就是当固定的那个数是正数时,后面再也找不到两数和为负数了,直接结束

代码实现:

class Solution 
{
public:vector<vector<int>> threeSum(vector<int>& nums){// 排序sort(nums.begin(), nums.end());vector<vector<int>> vv;int n = nums.size();for(int i = 0; i <= n-3; i++) // 固定数 a{if(nums[i] > 0) break; // 小优化int left = i +1, right = n-1, a = nums[i];// 双指针while(left < right){int sum = nums[left] + nums[right];if(sum > -a) right--;else if(sum < -a) left++;else {vv.push_back({nums[i], nums[left], nums[right]});// 去重,注意越界while(left < right && nums[left] == nums[left+1]) left++;while(left < right && nums[right] == nums[right-1]) right--;left++;right--;}}while(i < n-1 && nums[i] == nums[i+1]) i++;}return vv;}
};

18.四数之和

在这里插入图片描述
在这里插入图片描述

算法原理:

本道题又是上一题的进阶版

在这里插入图片描述

难点/细节/技巧:

这道题会出现数据溢出的风险。所以当计算两个固定是数之和时,类型定义为 long long
其余细节参考上一题

代码实现:

class Solution 
{
public:vector<vector<int>> fourSum(vector<int>& nums, int target) {// 排序sort(nums.begin(), nums.end());int n = nums.size();vector<vector<int>> vv;for(int i = 0; i < n; i++) // 固定数a{// 三数和for(int j = i+1; j < n; j++)// 固定数b{// 双指针算法int left = j+1, right = n-1;long long t = (long long)target - (nums[i] + nums[j]);while(left < right){long long sum = nums[left] + nums[right];if(sum > t) right--;else if(sum < t) left++;else{vv.push_back({nums[i], nums[j], nums[left], nums[right]});// 去重while(left < right && nums[left] == nums[left+1]) left++;while(left < right && nums[right] == nums[right-1]) right--;left++;right--;}}while(j < n-1 && nums[j] == nums[j+1]) j++;}while(i < n-1 && nums[i] == nums[i+1]) i++;}return vv;}
};

三,算法总结

双指针算法是一种基础,但是十分经典的算法。通过上面的若干道题可知,"双指针"使用起来是十分灵活的,有时代指数组下标,有时也可以代指一个数使用双指针算法的关键之一就是要控制好边界,稍不留神就会出现数组越界的问题并且在使用这个算法时强烈建议各位一定要多画图,光靠想象容易出错并且会忽略很多细节问题

这篇关于【基础算法总结】双指针的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144111

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

解决java.lang.NullPointerException问题(空指针异常)

《解决java.lang.NullPointerException问题(空指针异常)》本文详细介绍了Java中的NullPointerException异常及其常见原因,包括对象引用为null、数组元... 目录Java.lang.NullPointerException(空指针异常)NullPointer

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为