COI实验室技能:图像到图像的深度学习开发框架(pytorch版)

2024-09-07 01:28

本文主要是介绍COI实验室技能:图像到图像的深度学习开发框架(pytorch版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Basic deep learning framework for image-to-image

这个开发框架旨在帮助科研人员快速地实现图像到图像之间的模型开发。
github连接:https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image
在这里插入图片描述

目录

  • 1模型开发
    • 1-1克隆项目到本地
    • 1-2深度学习开发
  • 2环境配置
    • 2-1安装conda
    • 2-2安装pytorch

1模型开发

1-1克隆项目到本地

(1)仓库右上角有个绿色‘code’按钮,下拉选择download zip。

(2)或者安装了git工具之后,在命令行运行下面指令:

git clone https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image.git

(3)数据集设置

dataset/input/存放输入的数据集;
dataset/label存放标签的数据集;
dataset/test_input存放测试输入的数据集;

1-2深度学习开发

(1)训练image-to-image任务

python main.py --running_name demo

(2)测试image-to-image任务

python main.py --running_name demo --is_training 0 --is_testing 1

(3)测试单张图像

python main.py --is_training 0 --img_path dataset/demo.png

(5)参数解释

--running_name:为每次训练提供一个运行名称,代码会创建相应名称的文件夹保存结果和日志。

注:非常便于网络的多次运行和分析,比如设置一个递增的版本名称,设置循环,可以一次进行重复实验。

--is_train:设置是否训练,默认训练;

--is_test:设置是否测试,默认测试;

--img_path:指定一张测试图像的路径;

(6)查看训练过程

  • log_demo.txt保存了此次训练所使用的配置信息和训练过程信息;
  • weights/demo/best_model.pth保存了验证集loss最小的模型;
  • results/demo/eval/保存了每一步训练时一个batch的推理结果;

(7)其他

在快速训练上,可以使用上述命令行的方法,如果需要细致开发,可以使用vscode或pycharm,使用编译器运行代码。

2环境配置

建议有高配电脑,或者直接使用远程服务器已经配置好的环境。

2-1安装conda

annaconda,自带基础的python库,比较齐全,占用空间会比较大,网址:https://www.anaconda.com/download/
miniconda,纯净版conda命令软件,不自带库,需自行安装,占用空间小,网址:https://docs.anaconda.com/miniconda/

2-2安装pytorch

访问torch官网,直接通过指令进行安装。网址:https://pytorch.org/get-started/locally/
在这里插入图片描述

比如:打开cmd,输入:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3例子

会将参数配置、模型结果、训练epoch的信息记录到日志中;
在这里插入图片描述

会保存每一个epoch的验证集结果(第一个batch的),如下图所示的是从严重退化的散射图中恢复出清晰的图像。
在这里插入图片描述

这篇关于COI实验室技能:图像到图像的深度学习开发框架(pytorch版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143663

相关文章

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优