本文主要是介绍周期性清除Spark Streaming流状态的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在Spark Streaming程序中,我们经常需要使用有状态的流来统计一些累积性的指标,比如各个商品的PV。简单的代码描述如下,使用mapWithState()算子:
现在的问题是,PV并不是一直累加的,而是每天归零,重新统计数据。要达到在凌晨0点清除状态的目的,有以下两种方法。
编写脚本重启Streaming程序
用crontab、Azkaban等在凌晨0点调度执行下面的Shell脚本:
stream_app_name='com.xyz.streaming.MallForwardStreaming'
cnt=`ps aux | grep SparkSubmit | grep ${stream_app_name} | wc -l`
if [ ${cnt} -eq 1 ]; then
pid=`ps aux | grep SparkSubmit | grep ${stream_app_name} | awk '{print $2}'`
kill -9 ${pid}
sleep 20
cnt=`ps aux | grep SparkSubmit | grep ${stream_app_name} | wc -l`
if [ ${cnt} -eq 0 ]; then
nohup sh /path/to/streaming/bin/mall_forward.sh > /path/to/streaming/logs/mall_forward.log 2>&1
fi
fi
这种方式最简单,也不需要对程序本身做任何改动。但随着同时运行的Streaming任务越来越多,就会显得越来越累赘了。
给StreamingContext设置超时
在程序启动之前,先计算出当前时间点距离第二天凌晨0点的毫秒数:
def msTillTomorrow = {
val now = new Date()
val tomorrow = new Date(now.getYear, now.getMonth, now.getDate + 1)
tomorrow.getTime - now.getTime
}
然后将Streaming程序的主要逻辑写在while(true)循环中,并且不像平常一样调用StreamingContext.awaitTermination()方法,而改用awaitTerminationOrTimeout()方法,即:
while (true) {
val ssc = new StreamingContext(sc, Seconds(BATCH_INTERVAL))
ssc.checkpoint(CHECKPOINT_DIR)
// ...处理逻辑...
ssc.start()
ssc.awaitTerminationOrTimeout(msTillTomorrow)
ssc.stop(false, true)
Thread.sleep(BATCH_INTERVAL * 1000)
}
在经过msTillTomorrow毫秒之后,StreamingContext就会超时,再调用其stop()方法(注意两个参数,stopSparkContext表示是否停止关联的SparkContext,stopGracefully表示是否优雅停止),就可以停止并重启StreamingContext。
以上两种方法都是仍然采用Spark Streaming的机制进行状态计算的。如果其他条件允许的话,我们还可以抛弃mapWithState(),直接借助外部存储自己维护状态。比如将Redis的Key设计为product_pv:[product_id]:[date]
,然后在Spark Streaming的每个批次中使用incrby指令,就能方便地统计PV了,不必考虑定时的问题。
这篇关于周期性清除Spark Streaming流状态的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!