leetcode : 64 最小路径和 动态规划

2024-09-06 21:52

本文主要是介绍leetcode : 64 最小路径和 动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

64. 最小路径和

题目链接https://leetcode.cn/problems/minimum-path-sum/

题目描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

 [1,3,1][1,5,1][4,2,1]      

输出: 7

解释: 因为路径 1→3→1→1→1 的总和最小。

题目解法

从题目中我们可以知道,每次只能向下或者向右移动一步。

因此,第 i 行第 j 列的最小路径和与第 i-1 行第 j 列的最小路径和第i行第j-1列的最小路径和有关。

因此,我们可以用动态规划的方法来求解。

设 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。

  1. 定义一个二维数组 dp,其中 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。
  2. 则dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j],其中 grid[i][j] 表示网格中第 i 行第 j 列的元素。注意当i-1或者j-1越界时,说明无法从该点走到右下角,因此需要取最大值。
  3. 初始值 dp[0][0] = grid[0][0],其他 dp[i][j] = 0。
  4. 最后返回 dp[m-1][n-1],即为最小路径和。

代码实现

python版本:

class Solution:def minPathSum(self, grid: List[List[int]]) -> int:if not grid or not grid[0]:return 0m, n = len(grid), len(grid[0])dp = gridfor i in range(1, m):dp[i][0] = dp[i - 1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j - 1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]return dp[m - 1][n - 1]

Go版本:

func minPathSum(grid [][]int) int {m:=len(grid)n:=len(grid[0])res:=make([][]int,m)for i:=range res{res[i]=make([]int,n)}res[0][0]=grid[0][0]for i:=1;i<n;i++{res[0][i]=res[0][i-1]+grid[0][i]}for i:=1;i<m;i++{res[i][0]=res[i-1][0]+grid[i][0]}for i:=1;i<m;i++{for j:=1;j<n;j++{res[i][j]=min(res[i-1][j],res[i][j-1])+grid[i][j]}}return res[m-1][n-1]
}

C++版本:

class Solution {
public:int minPathSum(vector<vector<int>>& dp) {int m=dp.size(),n=dp[0].size();auto res=vector<vector<int>> (m,vector<int>(n));res[0][0]=dp[0][0];for(int i=1;i<m;i++){res[i][0]=res[i-1][0]+dp[i][0];}for(int j=1;j<n;j++){res[0][j]=res[0][j-1]+dp[0][j];}for(int i=1;i<m;i++){for(int j=1;j<n;j++){res[i][j]=min(res[i-1][j],res[i][j-1])+dp[i][j];}}return res[m-1][n-1];}
};

这篇关于leetcode : 64 最小路径和 动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143225

相关文章

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表