【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?

2024-09-06 21:44

本文主要是介绍【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

  • 【扩散模型(一)】中介绍了 Stable Diffusion 可以被理解为重建分支(reconstruction branch)和条件分支(condition branch)
  • 【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究
  • 【扩散模型(三)】IP-Adapter 源码详解1-训练输入 介绍了训练代码中的 image prompt 的输入部分,即 img projection 模块。
  • 【扩散模型(四)】IP-Adapter 源码详解2-训练核心(cross-attention)详细介绍 IP-Adapter 训练代码的核心部分,即插入 Unet 中的、针对 Image prompt 的 cross-attention 模块。
  • 【扩散模型(五)】IP-Adapter 源码详解3-推理代码 详细介绍 IP-Adapter 推理过程代码。
  • 【可控图像生成系列论文(四)】IP-Adapter 具体是如何训练的?1公式篇
  • 【扩散模型(六)】IP-Adapter 是如何训练的?2 源码篇(IP-Adapter Plus)
  • 【扩散模型(九)】IP-Adapter 与 IP-Adapter Plus 的具体区别是什么?

文章目录

  • 系列文章目录
    • adapter_modules 分为两类
  • 总结


通过前面的系列文章,很清楚要训练的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。

而 image_proj_model 这块比较简单,原码如下所示

    # freeze parameters of models to save more memoryunet.requires_grad_(False)vae.requires_grad_(False)text_encoder.requires_grad_(False)image_encoder.requires_grad_(False)#ip-adapterimage_proj_model = ImageProjModel(cross_attention_dim=unet.config.cross_attention_dim,clip_embeddings_dim=image_encoder.config.projection_dim,clip_extra_context_tokens=4,)

adapter_modules 分为两类

  1. AttnProcessor 对应 self attention
  2. IPAttnProcessor 对应 cross attention

按理说 self attention 对应的 AttnProcessor 应该不会被训练,但是 training = True,便让人非常费解。
在这里插入图片描述
进一步查看 AttnProcessor2_0 和 IPAttnProcessor2_0 后,就清楚了,因为从 AttnProcessor2_0 的构造函数(init)中并没有参数,就算是 trianing = True 也并不影响训练,实际训练的模块还是 IPAttnProcessor2_0 构造函数中的 to_k_ip 和 to_v_ip 两层 linear!

class AttnProcessor2_0(torch.nn.Module):r"""Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0)."""def __init__(self,hidden_size=None,cross_attention_dim=None,):super().__init__()if not hasattr(F, "scaled_dot_product_attention"):raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")def __call__(
...class IPAttnProcessor2_0(torch.nn.Module):r"""Attention processor for IP-Adapater for PyTorch 2.0.Args:hidden_size (`int`):The hidden size of the attention layer.cross_attention_dim (`int`):The number of channels in the `encoder_hidden_states`.scale (`float`, defaults to 1.0):the weight scale of image prompt.num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):The context length of the image features."""def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):super().__init__()if not hasattr(F, "scaled_dot_product_attention"):raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")self.hidden_size = hidden_sizeself.cross_attention_dim = cross_attention_dimself.scale = scaleself.num_tokens = num_tokensself.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)def __call__(

总结

  1. IP-Adapter 训的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。
  2. 在 adapter_modules 中,实际只训了 IPAttnProcessor2_0 的 to_k_ip 和 to_v_ip。
  3. adapter_modules 是在每个有含有 cross attention 的 unet block 里进行的替换,如下图所示。

在这里插入图片描述

这篇关于【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143206

相关文章

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

C#中的 StreamReader/StreamWriter 使用示例详解

《C#中的StreamReader/StreamWriter使用示例详解》在C#开发中,StreamReader和StreamWriter是处理文本文件的核心类,属于System.IO命名空间,本... 目录前言一、什么是 StreamReader 和 StreamWriter?1. 定义2. 特点3. 用