HDFS读写数据过程原理分析

2024-09-06 20:58

本文主要是介绍HDFS读写数据过程原理分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

暴走大数据

点击右侧关注,暴走大数据!

Hadoop HDFS读写数据过程原理分析

在学习hadoop hdfs的过程中,有很多人在编程实践这块不知道该其实现的原理是什么,为什么通过几十行小小的代码就可以实现对hdfs的数据的读写。

在下面的介绍中会详细的说明该其过程实现的原理(图片选自中国大学MOOC[大数据技术原理与应用]课程)。

一、读数据的原理分析

1. 打开文件。

用Java导入FileSystem类,通过FileSystem.get(conf)声明一个实例对象fs,从而分布式系统底层的配置文件会被项目所调用,如core-site.xml、hdfs-site.xml;进而生成一个子类DistributedFileSystem,这时候实例对象fs与分布式系统也就紧紧相关了。

由于我们要读数据,当然就需要使用到输入流,这时候输入流的类型是FsDataInputStream,其中封装着DFSInputStream。

在这里为什么我们看不见或者无法调用DFSInputStream呢,因为这是Hadoop后台自动给其封装的好的,真正与Hadoop当中的名称节点进行交流的,其实是DFSInputStream,而不是FsDataInputStream。

FsDataInputStream在项目中是干嘛呢,其实是与客户端进行交流的。

2. 获取数据块信息

由于FsDataInputStream内部封装了DFSInputStream,要获取项目所需要的数据被存放到哪些数据节点,因此DFSInputStream会通过conf中的配置文件信息远程与名称节点进行交流。

通过当中的ClientProtocal.getBlockLocations()方法来向名称节点查找项目所需的数据被存放到哪些数据节点,而名称节点会把文件的开始一部分数据位置信息返回去。

3. 读取请求

客户端获得输入流FsDataInputStream返回的数据位置信息,就可以使用read函数读取数据。

这时候肯定不少就近客户端的存在,事实上,名称节点在返回时还包括将数据节点距离客户端的远近进行排序,而客户端会自动选择距离最近的一个数据节点进行连接,接着读取数据。

4. 读取数据

当客户端读取完数据后,FsDataInputStream需要关闭和数据节点的连接。

5. 获取数据块信息

对应刚才的第二步,我们可能只读取了文件数据的部分数据块位置信息,因此需要再次通过ClientProtocal.getBlockLocations()方法来向名称节点查找项目所需的下一个数据被存放到哪些数据节点。

同样的,名称节点会返回下一个数据的数据节点位置信息节点列表给客户端。

6. 读取数据

客户端获取信息后,继续通过read函数与这些数据节点进行连接,不断循环,知道完成所有数据库的读取。

7. 关闭文件

客户端调用FsDataInputStream输入流的关闭操作close,关闭整个文件读取数据的过程。

二、写数据的原理分析

1. 创建文件请求

与读数据一样,通过FileSystem.get(conf)声明一个实例对象fs,从而分布式系统底层的配置文件会被项目所调用,如core-site.xml、hdfs-site.xml;进而生成一个子类DistributedFileSystem,这时候实例对象fs与分布式系统也就紧紧相关了。

由于我们要写数据,当然就需要使用到输出流,这时候输出流的类型是FsDataOutputStream,其中封装着DFSOutputStream。

在这里为什么我们看不见或者无法调用DFSOutputStream呢,因为这是Hadoop后台自动给其封装的好的,真正与Hadoop当中的名称节点进行交流的,其实是DFSOutputStream,而不是FsDataOutputStream。

FsDataOutputStream在项目中是干嘛呢,其实是与客户端进行交流的。

2. 创建文件元数据

DFSOutputStream执行RPC远程调用,让名称节点在文件系统的命名空间中新建一个文件。

名称节点不会直接创建文件,首先会进行检查,检查该文件是否已存在,接着会检查客户端是否有权限去创建该文件。如果检查通过,名称节点则会创建该文件,通过数组返回。

3. 写入数据

由于写数据要写入数据节点,而数据副本也会被相应写入进去,有点类似于流水线。在HDFS中有一种非常高效的写数据方式,叫做流水线的复制方式。

将客户端要写的数据,分成一个个小的数据包,这些数据包会被放在DFSOutputStream对象的内部队列,之后DFSOutputStream向名称节点申请保存这些数据块的数据节点。

4. 写入数据包

名称节点返回信息后,客户端可以知道写入到哪些数据节点,一个数据节点列表有很多个数据节点,这些数据节点会被排成一个队列, 并且把一个数据保存到多个数据节点上,形成数据流的管道。

而放在队列的数据包会被再次打包成数据包,将其发送到整个数据流管道当中的第一个数据节点,接着第一个数据节点发送给第二个数据节点以此类推。因为这些数据包要重复写到这些数据块上,一模一样的数据块也叫数据副本。这些数据节点就形成一个流水线。

5. 接收确认包

当最后一个数据节点写好数据块后,就会返回一个确认包。最后一个数据节点发送给最后第二个数据节点以此类推,传回到第一个数据节点,再传回到客户端。

6. 关闭文件

客户端接收到时则说明数据的整个写操作完成。完成后就可以关闭文件。

7. 写操作完成

由此整个HDFS写操作就就完成。

欢迎点赞+收藏+转发朋友圈素质三连

文章不错?点个【在看】吧! ????

这篇关于HDFS读写数据过程原理分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143100

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱