Spark Streaming整合log4j、Flume与Kafka的案例

2024-09-06 20:38

本文主要是介绍Spark Streaming整合log4j、Flume与Kafka的案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

来源:作者TAI_SPARK,http://suo.im/5w7LF8

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

暴走大数据

点击右侧关注,暴走大数据!

1.框架

2.log4j完成模拟日志输出

设置模拟日志格式,log4j.properties:

log4j.rootLogger = INFO,stdoutlog4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = %d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%n

模拟日志输出,LoggerGenerator.java:

import org.apache.log4j.Logger;/*** 模拟日志产生*/
public class LoggerGenerator {private static Logger logger = Logger.getLogger(LoggerGenerator.class.getName());public static void main(String[] args) throws Exception{int index = 0;while(true){Thread.sleep(1000);logger.info("value:" + index++);}}
}

运行结果:

2020-03-07 18:21:37,637 [main] [LoggerGenerator] [INFO] - current value is:0
2020-03-07 18:21:38,639 [main] [LoggerGenerator] [INFO] - current value is:1
2020-03-07 18:21:39,639 [main] [LoggerGenerator] [INFO] - current value is:2
2020-03-07 18:21:40,640 [main] [LoggerGenerator] [INFO] - current value is:3
2020-03-07 18:21:41,640 [main] [LoggerGenerator] [INFO] - current value is:4
2020-03-07 18:21:42,641 [main] [LoggerGenerator] [INFO] - current value is:5
2020-03-07 18:21:43,641 [main] [LoggerGenerator] [INFO] - current value is:6
2020-03-07 18:21:44,642 [main] [LoggerGenerator] [INFO] - current value is:7
2020-03-07 18:21:45,642 [main] [LoggerGenerator] [INFO] - current value is:8
2020-03-07 18:21:46,642 [main] [LoggerGenerator] [INFO] - current value is:9
2020-03-07 18:21:47,643 [main] [LoggerGenerator] [INFO] - current value is:10

3.Flume收集log4j日志

$FLUME_HOME/conf/streaming.conf:

agent1.sources=avro-source
agent1.channels=logger-channel
agent1.sinks=log-sink#define source
agent1.sources.avro-source.type=avro
agent1.sources.avro-source.bind=0.0.0.0
agent1.sources.avro-source.port=41414#define channel
agent1.channels.logger-channel.type=memory#define sink
agent1.sinks.log-sink.type=loggeragent1.sources.avro-source.channels=logger-channel
agent1.sinks.log-sink.channel=logger-channel

启动Flume(注意输出到控制台上为INFO,console,不是点【.】):

flume-ng agent \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/streaming.conf \
--name agent1 \
-Dflume.root.logger=INFO,console

pom.xml加上一个jar包:

    <dependency><groupId>org.apache.flume.flume-ng-clients</groupId><artifactId>flume-ng-log4jappender</artifactId><version>1.6.0</version></dependency>

修改log4j.properties,使其与Flume链接:

log4j.rootLogger = INFO,stdout,flumelog4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = %d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%nlog4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = hadoop000
log4j.appender.flume.Port = 41414
log4j.appender.flume.UnsafeMode = true

启动log4j:

Flume采集成功

4.KafkaSink链接Kafka与Flume

使用Kafka第一件事是把Zookeeper启动起来~

./zkServer.sh start

启动Kafka

./kafka-server-start.sh -daemon /home/hadoop/app/kafka_2.11-0.9.0.0/config/server.properties 

看下Kafka列表(用./kafka-topics.sh会报错,用“./”加文件名.sh执行时,必须给.sh文件加x执行权限):

kafka-topics.sh --list --zookeeper hadoop000:2181

创建一个topic:

kafka-topics.sh --create \
--zookeeper hadoop000:2181 \
--replication-factor 1 \
--partitions 1 \
--topic tp_streamingtopic

对接Flume与Kafka,设置Flume的conf,取名为streaming2.conf:

Kafka sink需要的参数有(每个版本不一样,具体可以查阅官网):

  • sink类型填KafkaSink

  • 需要链接的Kafka topic

  • Kafka中间件broker的地址与端口号

  • 是否使用握手机制

  • 每次发送的数据大小

agent1.sources=avro-source
agent1.channels=logger-channel
agent1.sinks=kafka-sink#define source
agent1.sources.avro-source.type=avro
agent1.sources.avro-source.bind=0.0.0.0
agent1.sources.avro-source.port=41414#define channel
agent1.channels.logger-channel.type=memory#define sink
agent1.sinks.kafka-sink.type=org.apache.flume.sink.kafka.KafkaSink
agent1.sinks.kafka-sink.topic = tp_streamingtopic
agent1.sinks.kafka-sink.brokerList = hadoop000:9092
agent1.sinks.kafka-sink.requiredAcks = 1
agent1.sinks.kafka-sink.batchSize = 20agent1.sources.avro-source.channels=logger-channel
agent1.sinks.kafka-sink.channel=logger-channel

启动Flume:

flume-ng agent \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/streaming2.conf \
--name agent1 \
-Dflume.root.logger=INFO,console

Kafka需要启动一个消费者消费Flume中Kafka sink来的数据:

./kafka-console-consumer.sh --zookeeper hadoop000:2181 --topic tp_streamingtopic

启动log4j:

成功传输~

5.Spark Streaming消费Kafka数据

package com.taipark.sparkimport kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}/*** Spark Streaming 对接 Kafka*/
object KafkaStreamingApp {def main(args: Array[String]): Unit = {if(args.length != 2){System.err.println("Userage:KafkaStreamingApp<brokers><topics>");System.exit(1);}val Array(brokers,topics) = argsval sparkConf = new SparkConf().setAppName("KafkaReceiverWordCount").setMaster("local[2]")val ssc = new StreamingContext(sparkConf,Seconds(5))val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)val topicSet = topics.split(",").toSetval messages = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicSet)//第二位是字符串的值messages.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()ssc.start()ssc.awaitTermination()}}

入参是Kafka的broker地址与topic名称:

本地Run一下:

欢迎点赞+收藏+转发朋友圈素质三连

文章不错?点个【在看】吧! ????

这篇关于Spark Streaming整合log4j、Flume与Kafka的案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143065

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

springboot整合TDengine全过程

《springboot整合TDengine全过程》:本文主要介绍springboot整合TDengine全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录环境准备JDBC-JNI方式准备依赖实体类Mapper配置类测试类RESTful方式实体类配置类测试类总结

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4