Pyspark DataFrame常用操作函数和示例

2024-09-06 19:12

本文主要是介绍Pyspark DataFrame常用操作函数和示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

针对类型:pyspark.sql.dataframe.DataFrame

目录

1.打印前几行

1.1 show()函数

1.2 take()函数

2. 读取文件

2.1 spark.read.csv

3. 获取某行某列的值(具体值)

4.查看列名

5.修改列名

5.1 修改单个列名

5.2 修改多个列名

5.2.1 链式调用 withColumnRenamed 方法

5.2.2 使用 selectExpr 方法

6. pandas类型转化为pyspark  pandas

7.选择特定的列,创建一个新的 DataFrame

8.列表套字典格式转化为pyspark DataFrame

9. 根据某列或者某列进行去重

10. pyspark 的两个dataframe合并

11.查看 pyspark dataframe中某列为空的数量

12.删除 pyspark dataframe中 第一行数据

13.pyspark dataframe用空格拼接两列得到新的列

14.将pyspark dataframe 保存到集群(分片)

16.将pyspark dataframe 保存为csv

实际场景1

实际场景2


1.打印前几行

1.1 show()函数

  • show() 函数会将指定数量的行(默认是 20 行)转换为字符串并打印到控制台。
  • 无返回值,直接打印数据到控制台。

用法:

df.show()  # 默认显示前 20 行
df.show(10)  # 显示前 10 行

1.2 take()函数

  • 用于获取 DataFrame 的前 N 行数据,返回一个包含 Row 对象的列表。
  • 返回一个包含 Row 对象的列表。
  • 返回一个包含前 N 行数据的列表,每行数据以 Row 对象的形式存在。你可以通过索引访问这些行,并进一步处理它们。
rows = df.take(5)  # 获取前 5 行数据
for row in rows:print(row)

2. 读取文件

2.1 spark.read.csv

df = spark.read.csv(path, sep="\t", header=False, inferSchema=True).toDF('id','time','label','feature')
  • inferSchema=True: 让 Spark 自动推断 CSV 文件中各列的数据类型
  • toDF: 这是一个 DataFrame 方法,用于为 DataFrame 的列指定新的列名。

3. 获取某行某列的值(具体值)

直接获取 DataFrame 的特定行(例如第 562962 行)并不是一个高效的操作,因为 Spark 是

分布式计算框架,数据被分割并在多个节点上并行处理

# 获取第一行
first_row = df.first()# 获取 feature 列的值
first_row['feature_1']
# 获取前两行
rows = df.take(2)# 获取第二行
second_row = rows[1]# 获取 feature 列的值
second_row['feature']

4.查看列名

df.columns

5.修改列名

5.1 修改单个列名

# 修改列名
df_renamed = df.withColumnRenamed("name", "new_name")

5.2 修改多个列名

5.2.1 链式调用 withColumnRenamed 方法

# 修改多个列名
df_renamed = df.withColumnRenamed("id", "new_id").withColumnRenamed("name", "new_name")

5.2.2 使用 selectExpr 方法

注意:使用 selectExpr 方法时,最后只会得到你修改的列,即,在函数参数中的列名

如果想使用该方法时,还想要原来的列名,就直接, 在参数中加入,"原列名 as 原列名"

# 使用 selectExpr 修改列名
df_renamed = df.selectExpr("id as new_id", "name as new_name")

6. pandas类型转化为pyspark  pandas

pandas.core.frame.DataFrame 类型转化为 pyspark.sql.dataframe.DataFrame
# 将 Pandas DataFrame 转换为 PySpark DataFrame
pyspark_df = spark.createDataFrame(pandas_df)

7.选择特定的列,创建一个新的 DataFrame

# 选择某几列并创建新的 DataFrame
new_df = df.select("name", "age")

8.列表套字典格式转化为pyspark DataFrame

# 示例列表套字典
data = [{"name": "Alice", "age": 25, "id": 1},{"name": "Bob", "age": 30, "id": 2},{"name": "Cathy", "age": 35, "id": 3}
]# 将列表套字典转换为 PySpark DataFrame
df = spark.createDataFrame(data)# 显示 DataFrame
df.show()

9. 根据某列或者某列进行去重

duyuv3_1_df = duyuv3_1_df.dropDuplicates(['md5', 'time', 'label'])

10. pyspark 的两个dataframe合并

merged_v3_1_df = duyuv3_1_df.join(passid_md5_df, on=['md5'], how='left')

11.查看 pyspark dataframe中某列为空的数量

null_passid_count = merged_v3_1_df.filter(merged_v3_1_df['passid'].isNull()).count()
print(f"passid is null:{null_passid_count}")

12.删除 pyspark dataframe中 第一行数据

data_df = data_df.filter(col("_c0") != data_df.first()[0])
  • data_df.first(): 获取 DataFrame 的第一行数据。

  • col("_c0"): 获取 DataFrame 的第一列(默认情况下,Spark 会将 CSV 文件的列命名为 _c0_c1_c2, ...)。

  • data_df.filter(col("_c0") != data_df.first()[0]): 过滤掉第一行数据。这里假设第一行的第一列值与后续行的第一列值不同,因此通过比较第一列的值来过滤掉第一行。

13.pyspark dataframe用空格拼接两列得到新的列

# 拼接特征列replace_df = replace_df.withColumn('merged_feature',when(col('featurev3').isNotNull() & col('feature_v3_1').isNotNull(),concat_ws(' ', col('featurev3'), col('feature_v3_1'))).when(col('featurev3').isNotNull(), col('featurev3')).when(col('feature_v3_1').isNotNull(), col('feature_v3_1')).otherwise(lit('')))

14.将pyspark dataframe 保存到集群(分片)

save_path =f'afs://szth.afs.****.com:9902/user/fsi/duyuv3_1_feature/result_duyuv3_1/'
rdd_combined_duyuv3_1 = feature_cgc.rdd.map(lambda x: "\t".join(x))
rdd_combined_duyuv3_1.saveAsTextFile(save_path)

16.将pyspark dataframe 保存为csv

output_path = "afs://szth.afs.baidu.com:9902/user/fsi/tongweiwei/duyuv3_1_feature/data.csv"
final_df.write.csv(output_path, header=True, mode="overwrite")

实际场景1

对某列的值进行按照空格进行切割,然后在对切割后的数据判断冒号前面的字符串判断是否在某一个字符串中,如果在则去除掉

from pyspark.sql.types import StringType
from pyspark.sql.functions import concat_ws, col, when, lit, udfdef filter_feature(feature_str, filter_list):parts = feature_str.split()filtered_parts = [part for part in parts if str(part.split(':')[0]) not in filter_list.split(',')]return ' '.join(filtered_parts)filter_feature_udf = udf(filter_feature, StringType())df = duyuv3_df.withColumn("featurev3", filter_feature_udf(col("featurev3"), lit(duyuv3_str)))

实际场景2

对某列的值,按照空格进行切割后,按照冒号前面的进行排序

from pyspark.sql.types import StringType
from pyspark.sql.functions import concat_ws, col, when, lit, udfdef sort_by_number(value):# 将输入字符串按空格分割为列表value = value.strip().split(" ")value_list = []# 遍历列表中的每个元素,提取数字部分并排序for val in value:try:feat_num = int(val.split(":")[0])value_list.append(val)except:continuesorted_pairs = sorted(value_list, key=lambda x: int(x.split(":")[0]))return " ".join(sorted_pairs)sort_by_number_udf = udf(sort_by_number, StringType())feature_cgc = replace_df.withColumn("sorted_feat",sort_by_number_udf(replace_df["merged_feature"]))

这篇关于Pyspark DataFrame常用操作函数和示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142872

相关文章

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis配置文件中最常用的设置

《MyBatis配置文件中最常用的设置》文章主要介绍了MyBatis配置的优化方法,包括引用外部的properties配置文件、配置外置以实现环境解耦、配置文件中最常用的6个核心设置以及三种常用的Ma... 目录MyBATis配置优化mybatis的配置中引用外部的propertis配置文件⚠️ 注意事项X

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

C#中DateTime的格式符的实现示例

《C#中DateTime的格式符的实现示例》本文介绍了C#中DateTime格式符的使用方法,分为预定义格式和自定义格式两类,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录DateTime的格式符1.核心概念2.预定义格式(快捷方案,直接复用)3.自定义格式(灵活可控

MyBatisPlus乐观锁和悲观锁的实现示例

《MyBatisPlus乐观锁和悲观锁的实现示例》本文主要介绍了MyBatisPlus乐观锁和悲观锁,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录1.场景2.乐观锁和悲观锁3.乐观锁实现4.悲观锁1.场景一件商品,成本价是80元,售价是10