Pyspark DataFrame常用操作函数和示例

2024-09-06 19:12

本文主要是介绍Pyspark DataFrame常用操作函数和示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

针对类型:pyspark.sql.dataframe.DataFrame

目录

1.打印前几行

1.1 show()函数

1.2 take()函数

2. 读取文件

2.1 spark.read.csv

3. 获取某行某列的值(具体值)

4.查看列名

5.修改列名

5.1 修改单个列名

5.2 修改多个列名

5.2.1 链式调用 withColumnRenamed 方法

5.2.2 使用 selectExpr 方法

6. pandas类型转化为pyspark  pandas

7.选择特定的列,创建一个新的 DataFrame

8.列表套字典格式转化为pyspark DataFrame

9. 根据某列或者某列进行去重

10. pyspark 的两个dataframe合并

11.查看 pyspark dataframe中某列为空的数量

12.删除 pyspark dataframe中 第一行数据

13.pyspark dataframe用空格拼接两列得到新的列

14.将pyspark dataframe 保存到集群(分片)

16.将pyspark dataframe 保存为csv

实际场景1

实际场景2


1.打印前几行

1.1 show()函数

  • show() 函数会将指定数量的行(默认是 20 行)转换为字符串并打印到控制台。
  • 无返回值,直接打印数据到控制台。

用法:

df.show()  # 默认显示前 20 行
df.show(10)  # 显示前 10 行

1.2 take()函数

  • 用于获取 DataFrame 的前 N 行数据,返回一个包含 Row 对象的列表。
  • 返回一个包含 Row 对象的列表。
  • 返回一个包含前 N 行数据的列表,每行数据以 Row 对象的形式存在。你可以通过索引访问这些行,并进一步处理它们。
rows = df.take(5)  # 获取前 5 行数据
for row in rows:print(row)

2. 读取文件

2.1 spark.read.csv

df = spark.read.csv(path, sep="\t", header=False, inferSchema=True).toDF('id','time','label','feature')
  • inferSchema=True: 让 Spark 自动推断 CSV 文件中各列的数据类型
  • toDF: 这是一个 DataFrame 方法,用于为 DataFrame 的列指定新的列名。

3. 获取某行某列的值(具体值)

直接获取 DataFrame 的特定行(例如第 562962 行)并不是一个高效的操作,因为 Spark 是

分布式计算框架,数据被分割并在多个节点上并行处理

# 获取第一行
first_row = df.first()# 获取 feature 列的值
first_row['feature_1']
# 获取前两行
rows = df.take(2)# 获取第二行
second_row = rows[1]# 获取 feature 列的值
second_row['feature']

4.查看列名

df.columns

5.修改列名

5.1 修改单个列名

# 修改列名
df_renamed = df.withColumnRenamed("name", "new_name")

5.2 修改多个列名

5.2.1 链式调用 withColumnRenamed 方法

# 修改多个列名
df_renamed = df.withColumnRenamed("id", "new_id").withColumnRenamed("name", "new_name")

5.2.2 使用 selectExpr 方法

注意:使用 selectExpr 方法时,最后只会得到你修改的列,即,在函数参数中的列名

如果想使用该方法时,还想要原来的列名,就直接, 在参数中加入,"原列名 as 原列名"

# 使用 selectExpr 修改列名
df_renamed = df.selectExpr("id as new_id", "name as new_name")

6. pandas类型转化为pyspark  pandas

pandas.core.frame.DataFrame 类型转化为 pyspark.sql.dataframe.DataFrame
# 将 Pandas DataFrame 转换为 PySpark DataFrame
pyspark_df = spark.createDataFrame(pandas_df)

7.选择特定的列,创建一个新的 DataFrame

# 选择某几列并创建新的 DataFrame
new_df = df.select("name", "age")

8.列表套字典格式转化为pyspark DataFrame

# 示例列表套字典
data = [{"name": "Alice", "age": 25, "id": 1},{"name": "Bob", "age": 30, "id": 2},{"name": "Cathy", "age": 35, "id": 3}
]# 将列表套字典转换为 PySpark DataFrame
df = spark.createDataFrame(data)# 显示 DataFrame
df.show()

9. 根据某列或者某列进行去重

duyuv3_1_df = duyuv3_1_df.dropDuplicates(['md5', 'time', 'label'])

10. pyspark 的两个dataframe合并

merged_v3_1_df = duyuv3_1_df.join(passid_md5_df, on=['md5'], how='left')

11.查看 pyspark dataframe中某列为空的数量

null_passid_count = merged_v3_1_df.filter(merged_v3_1_df['passid'].isNull()).count()
print(f"passid is null:{null_passid_count}")

12.删除 pyspark dataframe中 第一行数据

data_df = data_df.filter(col("_c0") != data_df.first()[0])
  • data_df.first(): 获取 DataFrame 的第一行数据。

  • col("_c0"): 获取 DataFrame 的第一列(默认情况下,Spark 会将 CSV 文件的列命名为 _c0_c1_c2, ...)。

  • data_df.filter(col("_c0") != data_df.first()[0]): 过滤掉第一行数据。这里假设第一行的第一列值与后续行的第一列值不同,因此通过比较第一列的值来过滤掉第一行。

13.pyspark dataframe用空格拼接两列得到新的列

# 拼接特征列replace_df = replace_df.withColumn('merged_feature',when(col('featurev3').isNotNull() & col('feature_v3_1').isNotNull(),concat_ws(' ', col('featurev3'), col('feature_v3_1'))).when(col('featurev3').isNotNull(), col('featurev3')).when(col('feature_v3_1').isNotNull(), col('feature_v3_1')).otherwise(lit('')))

14.将pyspark dataframe 保存到集群(分片)

save_path =f'afs://szth.afs.****.com:9902/user/fsi/duyuv3_1_feature/result_duyuv3_1/'
rdd_combined_duyuv3_1 = feature_cgc.rdd.map(lambda x: "\t".join(x))
rdd_combined_duyuv3_1.saveAsTextFile(save_path)

16.将pyspark dataframe 保存为csv

output_path = "afs://szth.afs.baidu.com:9902/user/fsi/tongweiwei/duyuv3_1_feature/data.csv"
final_df.write.csv(output_path, header=True, mode="overwrite")

实际场景1

对某列的值进行按照空格进行切割,然后在对切割后的数据判断冒号前面的字符串判断是否在某一个字符串中,如果在则去除掉

from pyspark.sql.types import StringType
from pyspark.sql.functions import concat_ws, col, when, lit, udfdef filter_feature(feature_str, filter_list):parts = feature_str.split()filtered_parts = [part for part in parts if str(part.split(':')[0]) not in filter_list.split(',')]return ' '.join(filtered_parts)filter_feature_udf = udf(filter_feature, StringType())df = duyuv3_df.withColumn("featurev3", filter_feature_udf(col("featurev3"), lit(duyuv3_str)))

实际场景2

对某列的值,按照空格进行切割后,按照冒号前面的进行排序

from pyspark.sql.types import StringType
from pyspark.sql.functions import concat_ws, col, when, lit, udfdef sort_by_number(value):# 将输入字符串按空格分割为列表value = value.strip().split(" ")value_list = []# 遍历列表中的每个元素,提取数字部分并排序for val in value:try:feat_num = int(val.split(":")[0])value_list.append(val)except:continuesorted_pairs = sorted(value_list, key=lambda x: int(x.split(":")[0]))return " ".join(sorted_pairs)sort_by_number_udf = udf(sort_by_number, StringType())feature_cgc = replace_df.withColumn("sorted_feat",sort_by_number_udf(replace_df["merged_feature"]))

这篇关于Pyspark DataFrame常用操作函数和示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142872

相关文章

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具