我出题,你来算。根据Flink TaskManager内存模型,各部分内存分配?

2024-09-06 17:08

本文主要是介绍我出题,你来算。根据Flink TaskManager内存模型,各部分内存分配?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标”

回复"面试"获取更多惊喜

大数据面试提升私教训练营

2e8d487eebc08e46f367bd84d0ca8f25.png

Hi,我是王知无,一个大数据领域的原创作者。 

放心关注我,获取更多行业的一手消息。

先上一张官方给出的Flink(1.10版本以后)内存模型图示:

559288d97817d70cee9028a1be5060d5.png

然后再贴一张现在正在运行的flink任务与TaskManager内存有关的参数信息:

b05286daa6b251fa9aa42bd4cbab05a4.png b8197b0445d66e6a3469c5b57b5d51f3.png

现在开始看图说话:

从启动参数配置上,我们可以看到最大堆内存和初始堆内存都在1.5GB,DirectMemory的大小约为471M,Flink的Task就运行在一个TaskManager的JVM进程中,接下来分析该进程的内部结构。

Total Process Memory

TaskManage的内存分为5大部分:堆内存,堆外内存,直接内存,MetaSpace内存以及JVM Overhead内存。这5部分的总和就是总的Total Process Memory,这个值可以通过flink-conf.yml中taskmanager.memory.process.size配置,通过上面配置截图可以看出,例子中的总内存为4G。

Total Flink Memory

TaskManager进程占用的所有与Flink有关的内存(不包括JVM MetaSpace和Overhead内存),具体上上面截图所示,包含4大块:Flink框架内存(堆内/堆外),托管内存(堆外),网络缓存(堆外),任务内存(堆内/堆外)。我们可以通过taskmanager.memory.flink.size来指定flink 内存,同时flink官方建议我们不要同时配置Process Memory和Flink Memory。

# It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.

JVM Heap

JVM Heap分为两大部分,一个是Flink框架需要使用的堆内存,一个是Task运行所需的堆内存。

Framework Heap

Framework Heap是Flink框架保留的,不会用来执行Task,大小通过taskmanager.memory.framework.heap.size指定。

Task Heap

Task Heap Memory是专门用于执行Flink任务的堆内存空间,是用户代码,自定义数据结构真正占用的内存,通过参数taskmanager.memory.task.heap.size指定。

Off-Heap Memory

Managed Memory

Managed Memory是有Flink直接管理的堆外内存,用于排序,哈希表,中间结果缓存,以及RocksDB的状态后端。通过参数taskmanage.memory.managed.size指定,默认情况下不配置,通过参数taskmanager.memory.managed.fraction因子(默认0.4) * Total Flink Memory来指定大小。

Direct Memory
Framework Off-heap Memory

Flink框架的堆外内存部分,默认128M,通过taskmanager.memory.framework.off-heap.size指定,不建议修改。

Task Off-heap Memory

Flink执行task所使用的堆外内存。如果在Flink应用的代码中调用了Native的方法,需要用到off-head内存,这些内存会分配到Off-heap堆外内存中,通过参数taskmanage.memory.task.off-heap.size 指定,默认为0.

Network Memory

Flink的Task之间的shuffle,广播等操作以及与外部组件的数据传输需要用到Network Memory,该值通过以下3个参数确定:

  • taskmanager.memory.network.min:Network Memory最小值

  • taskmanager.memory.network.max:Network Memory最大值

  • taskmanager.memory.network.fraction:Network Memory占Total Flink Memory的比例,默认0.1,如果通过该比例值计算出的结果超出前两个MIN-MAX参数的范围,则已MIN-MAX为准。如果MIN-MAX参数使用同样的值,则表示NetWork是固定的内存大小。

JVM Metaspace Memory

从JDK 8开始,JVM把永久代去掉了。类的元数据信息放在了Metaspace Memory中。通过参数taskmanager.memory.jvm-metaspace.size指定,默认256M。

JVM Overhead Memory

为JVM预留的其他本地内存,用于线程栈、代码缓存等,通过以下三个参数配置

  • taskmanager.memory.jvm-overhead.min:JVM额外开销最小值,默认192M

  • taskmanager.memory.jvm-overhead.max:JVM额外开销最大值,默认1G

  • taskmanager.memory.jvm-overhead.fraction:JVM额外开销占Total Process Memory的比例,默认0.1。

总结

将官方提供的TaskManager的内存模型结合实际案例,各部分的内存分配图示如下:

0ed16581eac874040f78891468776fb7.png

如果这个文章对你有帮助,不要忘记 「在看」 「点赞」 「收藏」 三连啊喂!

11dd8a5bab2d5e37970bb81dd80c6215.png

5fc1a58e144ebe85d737a55f3b88270d.png

2022年全网首发|大数据专家级技能模型与学习指南(胜天半子篇)

互联网最坏的时代可能真的来了

我在B站读大学,大数据专业

我们在学习Flink的时候,到底在学习什么?

193篇文章暴揍Flink,这个合集你需要关注一下

Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS

Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点

我们在学习Spark的时候,到底在学习什么?

在所有Spark模块中,我愿称SparkSQL为最强!

硬刚Hive | 4万字基础调优面试小总结

数据治理方法论和实践小百科全书

标签体系下的用户画像建设小指南

4万字长文 | ClickHouse基础&实践&调优全视角解析

【面试&个人成长】2021年过半,社招和校招的经验之谈

大数据方向另一个十年开启 |《硬刚系列》第一版完结

我写过的关于成长/面试/职场进阶的文章

当我们在学习Hive的时候在学习什么?「硬刚Hive续集」

这篇关于我出题,你来算。根据Flink TaskManager内存模型,各部分内存分配?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142612

相关文章

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo