我出题,你来算。根据Flink TaskManager内存模型,各部分内存分配?

2024-09-06 17:08

本文主要是介绍我出题,你来算。根据Flink TaskManager内存模型,各部分内存分配?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标”

回复"面试"获取更多惊喜

大数据面试提升私教训练营

2e8d487eebc08e46f367bd84d0ca8f25.png

Hi,我是王知无,一个大数据领域的原创作者。 

放心关注我,获取更多行业的一手消息。

先上一张官方给出的Flink(1.10版本以后)内存模型图示:

559288d97817d70cee9028a1be5060d5.png

然后再贴一张现在正在运行的flink任务与TaskManager内存有关的参数信息:

b05286daa6b251fa9aa42bd4cbab05a4.png b8197b0445d66e6a3469c5b57b5d51f3.png

现在开始看图说话:

从启动参数配置上,我们可以看到最大堆内存和初始堆内存都在1.5GB,DirectMemory的大小约为471M,Flink的Task就运行在一个TaskManager的JVM进程中,接下来分析该进程的内部结构。

Total Process Memory

TaskManage的内存分为5大部分:堆内存,堆外内存,直接内存,MetaSpace内存以及JVM Overhead内存。这5部分的总和就是总的Total Process Memory,这个值可以通过flink-conf.yml中taskmanager.memory.process.size配置,通过上面配置截图可以看出,例子中的总内存为4G。

Total Flink Memory

TaskManager进程占用的所有与Flink有关的内存(不包括JVM MetaSpace和Overhead内存),具体上上面截图所示,包含4大块:Flink框架内存(堆内/堆外),托管内存(堆外),网络缓存(堆外),任务内存(堆内/堆外)。我们可以通过taskmanager.memory.flink.size来指定flink 内存,同时flink官方建议我们不要同时配置Process Memory和Flink Memory。

# It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.

JVM Heap

JVM Heap分为两大部分,一个是Flink框架需要使用的堆内存,一个是Task运行所需的堆内存。

Framework Heap

Framework Heap是Flink框架保留的,不会用来执行Task,大小通过taskmanager.memory.framework.heap.size指定。

Task Heap

Task Heap Memory是专门用于执行Flink任务的堆内存空间,是用户代码,自定义数据结构真正占用的内存,通过参数taskmanager.memory.task.heap.size指定。

Off-Heap Memory

Managed Memory

Managed Memory是有Flink直接管理的堆外内存,用于排序,哈希表,中间结果缓存,以及RocksDB的状态后端。通过参数taskmanage.memory.managed.size指定,默认情况下不配置,通过参数taskmanager.memory.managed.fraction因子(默认0.4) * Total Flink Memory来指定大小。

Direct Memory
Framework Off-heap Memory

Flink框架的堆外内存部分,默认128M,通过taskmanager.memory.framework.off-heap.size指定,不建议修改。

Task Off-heap Memory

Flink执行task所使用的堆外内存。如果在Flink应用的代码中调用了Native的方法,需要用到off-head内存,这些内存会分配到Off-heap堆外内存中,通过参数taskmanage.memory.task.off-heap.size 指定,默认为0.

Network Memory

Flink的Task之间的shuffle,广播等操作以及与外部组件的数据传输需要用到Network Memory,该值通过以下3个参数确定:

  • taskmanager.memory.network.min:Network Memory最小值

  • taskmanager.memory.network.max:Network Memory最大值

  • taskmanager.memory.network.fraction:Network Memory占Total Flink Memory的比例,默认0.1,如果通过该比例值计算出的结果超出前两个MIN-MAX参数的范围,则已MIN-MAX为准。如果MIN-MAX参数使用同样的值,则表示NetWork是固定的内存大小。

JVM Metaspace Memory

从JDK 8开始,JVM把永久代去掉了。类的元数据信息放在了Metaspace Memory中。通过参数taskmanager.memory.jvm-metaspace.size指定,默认256M。

JVM Overhead Memory

为JVM预留的其他本地内存,用于线程栈、代码缓存等,通过以下三个参数配置

  • taskmanager.memory.jvm-overhead.min:JVM额外开销最小值,默认192M

  • taskmanager.memory.jvm-overhead.max:JVM额外开销最大值,默认1G

  • taskmanager.memory.jvm-overhead.fraction:JVM额外开销占Total Process Memory的比例,默认0.1。

总结

将官方提供的TaskManager的内存模型结合实际案例,各部分的内存分配图示如下:

0ed16581eac874040f78891468776fb7.png

如果这个文章对你有帮助,不要忘记 「在看」 「点赞」 「收藏」 三连啊喂!

11dd8a5bab2d5e37970bb81dd80c6215.png

5fc1a58e144ebe85d737a55f3b88270d.png

2022年全网首发|大数据专家级技能模型与学习指南(胜天半子篇)

互联网最坏的时代可能真的来了

我在B站读大学,大数据专业

我们在学习Flink的时候,到底在学习什么?

193篇文章暴揍Flink,这个合集你需要关注一下

Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS

Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点

我们在学习Spark的时候,到底在学习什么?

在所有Spark模块中,我愿称SparkSQL为最强!

硬刚Hive | 4万字基础调优面试小总结

数据治理方法论和实践小百科全书

标签体系下的用户画像建设小指南

4万字长文 | ClickHouse基础&实践&调优全视角解析

【面试&个人成长】2021年过半,社招和校招的经验之谈

大数据方向另一个十年开启 |《硬刚系列》第一版完结

我写过的关于成长/面试/职场进阶的文章

当我们在学习Hive的时候在学习什么?「硬刚Hive续集」

这篇关于我出题,你来算。根据Flink TaskManager内存模型,各部分内存分配?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142612

相关文章

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常