一元分类、二元分类、多类分类、多标签学习

2024-09-06 08:48

本文主要是介绍一元分类、二元分类、多类分类、多标签学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

unary classification -- 一元分类

维基百科中的定义是:一类分类,即一元分类,通过仅包含该类的对象的训练数据中学习,试图能够在所有对象中识别该特定类的对象。

one-class classification是由[Moya & Hush][1]在1996年提出的,目前已有很多这方面的研究。一个类似的问题是PU Learning,后者是以半监督的学习方式从正类样本和未标记样本中学习,建立二元分类器。

binary classification --二元分类

二元分类是监督学习中分类问题的基本应用。监督学习通俗来讲就是训练集拥有正确的标签,例如你想根据房子的尺寸、卧室数等特征预测房价,那么你的训练集中除了有房子的特征以外,还得有这些房子的实际交易价格。与监督学习相对的是无监督学习,无监督学习中的训练集没有正确的标签,就好像你扔给了计算机一大堆数据,让计算机自己去学着找出里面有用的信息。监督学习中主要分为二类模型,回归和分类。生活中有许多二元分类的应用,例如你收到一封邮件,你想判断它是否是垃圾邮件?或者在银行的业务中,银行需要判断是否贷款给某个客户?

multi-label classification -- 多标签学习

Multi-label classification is a classification problem where multiple target labels must be assigned to each instance. -- Wikipedia

多标签学习与另外一个工作有强相关的联系——(multi-output classification)多输出学习(?)。另外,一定要与multi-class classification区分开。前者是指一个样本一般所属不仅仅是一个类别,它的输出一般是一个向量(010110,属于第2,4,5类);而后者一个样本只属于一个类。有两种方法解决这类问题:一类是problem transformation methods(即吧问题转换成二元分类问题,然后用上面所说的一元分类器来解决),一类是problem adaption methods。

multi-class classification -- 多类分类

终于到了我们的leading role。
In machine learning, multiclass or multinomial classification is the problem of classifying instances into one of the more than two classes(classifying instances into one of the two classes is called binary classification). -- Wikipedia

维基中的定义是:多类学习是指将样本从超出两个类的可能类别中分入一个类中。

这篇关于一元分类、二元分类、多类分类、多标签学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141551

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学