KNN-机器学习实战系列(一)

2024-09-06 05:38
文章标签 实战 学习 机器 系列 knn

本文主要是介绍KNN-机器学习实战系列(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开门见山,本文单说KNN:

作为机器学习实战书籍介绍的第一个算法,有一些值得说道的地方:

1:什么是KNN?

机器学习的一些基本知识和概念不加叙述了,直接给出KNN的白话定义:给定M个样本,每个样本均有N个数字衡量的属性,而每个样本均带有自身的标签:

这里,为什么需要数字化定义属性呢?这方便了我们衡量指标的计算,我们可以使用距离这一可用数学表达式实现的概念,来阐述何谓近邻。

而KNN,英文名:k-Nearest Neigbhors :称作K近邻算法,每次来一个新的样本,就可以通过从M个样本中,找出K个最近的样本,通过这K个样本的属性来判别新样本的类别:

可以看出,KNN属于监督类学习算法,对其提供支持的样本,都是标记好的样本;

2:算法角度的实现:

from numpy import *
def createDataSet():group = array([[1.0,1.1 ],[1.0,1.0],[0,0], [0,0.1]])labels = ['A','A','B','B']return group,labels
group,labels = createDataSet()

该段代码,负责样本集合的生成,浅显易懂,不多说:

这里,给出的样本非常简单,而实际上来说,我们在使用该算法的过程中,样本都会比较复杂,属性也会比较多,这些在本文不予涉及,生成样本的方式是多种多样的,我们这里要做的,是直接对合规的样本进行操作:

接下来是主题逻辑:

def classify0(intX,dataSet,labels,k):# 获取样本的总数,比如样本是N行dataSetSize = dataSet.shape[0]# tile方式,会生成N行与待测样本完全一致的数据集tiles  =  tile(intX, (dataSetSize,1))# 取差值,这就是python的简便之处了,一句话求取出所有的(x-x1)和(y-y1)diffMat =  tiles - dataSet# 对于所有的元素进行平方操作sqDiffMat = diffMat ** 2# 平方操作加起和,得到距离sqDistances = sqDiffMat.sum(axis=1)# 距离排序sortedDistIndicies = sqDistances.argsort()# 取出距离最小的K个点,记录标签classCount = {}for i in range(k):voteIlabel = labels[sortedDistIndicies[i]]classCount[voteIlabel] = classCount.get(voteIlabel,0)+1# 查看这K个点中,哪种类别比较多sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse=True)return sortedClassCount[0][0];

总体思想就是这样:很简单,很好理解,用一句古话说就是:近朱者赤,近墨者黑。

3:我对该算法的一些理解:

KNN算是机器学习之初诞生的一些老算法了,其性能还算不错,当然同时也是有缺陷的:

首先,其缺陷在于需要每次样本都要遍历一次所有的数据,这个计算量相对比较大,如果样本集合已经有百万,甚至是千万那么大,我们每次还要为一个样本去计算数百万,甚至是数千万次,投入和产出明显是不成正比的:

个人感觉,这里其实可以用堆排序的方法来做优化,设置一个K元素大小的最小堆,来尽可能减小算法的复杂度:

其二,这里的K设置是很关键的,假如说K太小,可能很少的元素就决定了新样例的样本,这是不合理的,如果K太大,会导致计算和排序比较麻烦,所以需要从中调和:

其三,如果某个属性值本身比较大,可能会导致在距离计算的时候,导致该属性占据的份额比较大,这是有问题的,所以可通过归一化进行处理,将数据的计算都整合在0-1的范围之内,方便我们的计算:

这篇关于KNN-机器学习实战系列(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141151

相关文章

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实