gmapping 实现过程和数据走向

2024-09-06 04:12

本文主要是介绍gmapping 实现过程和数据走向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全局地图坐标系gmap_pose数据处理过程

初始化Map位姿

初始化地图坐标map:map是不会变化的,是gmapping 程序启动的位置姿态就是地图的原地

  // 地图原点设置为激光中心位置 启动程序时,设置原点GMapping::OrientedPoint gmap_pose(0, 0, 0);

激光初始化里程计的位姿

  // 获取初始姿态GMapping::OrientedPoint initialPose;if(!getOdomPose(initialPose, scan.header.stamp)){ROS_WARN("Unable to determine inital pose of laser! Starting point will be set to zero.");initialPose = GMapping::OrientedPoint(0.0, 0.0, 0.0);}

获取当前激光雷达时间下的odom->lase的tf来得到里程计的位姿
通过tf变换来计算里程计的位姿

/*** @brief 尝试获取指定时间下的机器人里程计位置* * @param gmap_pose 输出参数,用于存储计算出的里程计位置* @param t 指定的时间点* * @return 返回是否成功获取里程计位置*/
bool SlamGMapping::getOdomPose(GMapping::OrientedPoint& gmap_pose, const ros::Time& t)
{// 获取中心激光雷达在指定时间的位置centered_laser_pose_.stamp_ = t;// 使用TF变换获取激光雷达中心位置对应的里程计坐标系下的位置tf::Stamped<tf::Transform> odom_pose;try{tf_.transformPose(odom_frame_, centered_laser_pose_, odom_pose);}catch(tf::TransformException e){ROS_WARN("计算里程计位置失败,跳过扫描 (%s)", e.what());return false;}// 提取里程计坐标系下位置的姿态角double yaw = tf::getYaw(odom_pose.getRotation());// 构造并返回里程计位置gmap_pose = GMapping::OrientedPoint(odom_pose.getOrigin().x(),odom_pose.getOrigin().y(),yaw);return true;
}

传递位姿数据setPose—>getPose()

后面通过getPose来读取gmap_pose的位姿

  // 设置激光雷达扫描的姿态reading.setPose(gmap_pose);

gmap_pose数据保存和传递

// 防止多次定义
#ifndef ODOMETRYREADING_H
#define ODOMETRYREADING_H// 引入基本的传感器读数类和点类
#include <string.h>
#include <sensor/sensor_base/sensorreading.h>
#include <utils/point.h>
// 引入里程计传感器类
#include "odometrysensor.h"// 命名空间GMapping,用于地图构建相关功能
namespace GMapping{// 里程计读数类,继承自SensorReading
class OdometryReading: public SensorReading{public:// 构造函数,初始化里程计读数// 参数odo: 里程计传感器对象的指针// 参数time: 读数的时间戳,默认为0OdometryReading(const OdometrySensor* odo, double time=0);// 获取当前姿态inline const OrientedPoint& getPose() const {return m_pose;}// 获取当前速度inline const OrientedPoint& getSpeed() const {return m_speed;}// 获取当前加速度inline const OrientedPoint& getAcceleration() const {return m_acceleration;}// 设置当前姿态inline void setPose(const OrientedPoint& pose) {m_pose=pose;}// 设置当前速度inline void setSpeed(const OrientedPoint& speed) {m_speed=speed;}// 设置当前加速度inline void setAcceleration(const OrientedPoint& acceleration) {m_acceleration=acceleration;}protected:// 当前姿态OrientedPoint m_pose;// 当前速度OrientedPoint m_speed;// 当前加速度OrientedPoint m_acceleration;
};};
// 结束防止多次定义
#endif

激光雷达数据处理过程

laserCallback----->initMapper----->addScan---->updataMap

1. 数据预处理

  • 激光雷达数据获取:从激光雷达传感器获取原始的扫描数据。
  • 数据滤波:对原始数据进行滤波处理,去除噪声和异常点。

2. 粒子滤波初始化

  • 粒子初始化:在初始时刻,生成一组粒子(即机器人的可能位置),每个粒子代表机器人可能的一个状态。
  • 权重分配:为每个粒子分配初始权重,通常所有粒子的权重相等。

3. 运动模型更新

  • 预测步骤:根据机器人的运动模型(如里程计数据),预测每个粒子在下一个时刻的位置。
  • 粒子扩散:由于运动模型存在误差,粒子会在预测位置周围进行一定程度的扩散,以模拟不确定性。

4. 观测模型更新

  • 激光数据匹配:将当前时刻的激光雷达数据与地图(由粒子表示)进行匹配,计算每个粒子的似然度。
  • 权重更新:根据激光数据的匹配结果,更新每个粒子的权重。匹配效果好的粒子权重增加,匹配效果差的粒子权重减少。

5. 重采样

  • 粒子重采样:根据更新后的粒子权重,进行重采样。权重高的粒子被保留或复制,权重低的粒子被淘汰,以确保粒子集能够更好地代表机器人的真实状态。

6. 地图更新

  • 地图构建:根据重采样后的粒子集,更新地图。每个粒子对应一个局部地图,通过融合所有粒子的局部地图,得到全局地图。
  • 地图优化:对地图进行优化,去除噪声点,平滑地图边界。

7. 循环迭代

  • 时间更新:重复上述步骤,随着时间的推移,不断更新粒子集和地图,直到完成整个环境的建图。

8. 结果输出

  • 定位结果:输出机器人的最终位置估计。
  • 地图输出:输出最终构建的地图。

这篇关于gmapping 实现过程和数据走向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140969

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存