【数据应用案例】openFive dota5v5战胜人类

2024-09-06 04:08

本文主要是介绍【数据应用案例】openFive dota5v5战胜人类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@案例来源:@AI科技大本营 @AI科技评论 @论智

@案例地址:https://mp.weixin.qq.com/s/exvP4FucUfeOONsUkyTz7w;https://mp.weixin.qq.com/s/-llCCnFkDypVNiEh4yjNMg;https://www.jqr.com/article/000306

 

0. 背景:美国时间8月5日,open AI的5v5dotaAI “Open Five”2比1战胜了由主播、前职业选手组成的人类战队。

 

1. 目标:训练能在5v5比赛中打赢高水平人类选手的AI

 

2. 难点:

    1)强化学习能学习到“带来高反馈”的模式,但是游戏中影响胜利的因素很多,视野、团战、技能冷却中、分路、兵线等,人类也难以定义哪些因素对最终胜利起到决定性因素,为模型制定反馈规则较为复杂

    2)仅仅以最终胜负作为反馈的话,会带来反馈稀疏的问题

    3)5v5游戏中需要团队配合,包括核心辅助的角色划分,前中后期的资源分配等

    4)视野有限:必须在有限信息中进行决策

    5)高维、连续的观察空间和动作空间

    6)短期收益与长期收益的矛盾:打钱可以提高短期收益,但是队友推塔时自己还在打钱会降低推塔成功率,从而影响长期收益

 

3. 基本框架

    1)为每个英雄单独训练一个网络,网络为一个单层的、1024-unit 的 LSTM

    2)观察空间:通过dota的bot api获取实时的游戏信息,将世界视为 20000 个数字的列表

    3)动作空间:动作、动作在单元格网络中的X或Y坐标等,共8个值的列表

    4)训练:

        a. 使用“Rapid”通用 RL 训练系统,训练系统分为 rollout workers,运行游戏副本,智能体(agent),用来收集经验,优化器节点(optimizer nodes)执行跨 GPU 组的同步梯度下降。每次训练还包括分别对训练机器人以及样本机器人进行评估的组件,以及监视软件,比如 TensorBoard,Sentry 以及 Grafana。

        b. 使用128,000个preemptible CPU,256个P100 GPU。一天的训练量相当于人类不间断玩了180年游戏

        c. 为了避免“策略崩溃”,智能体在训练的时候,80% 的游戏都是自我对抗, 另外 20% 则是与过去的自己进行对抗

        d. 为了强制探索动作空间,在训练中对智能体的血量、移速、初始等级随机化,强迫其进行探索

 

4. trick

    1)增加表现行为(总财产、补刀数、击杀数、助攻数、死亡数)作为反馈指标

    2)引入人类对英雄的定位信息(如核心、辅助等):鼓励AI将表现指标“达到”人类的平均水平,而不是越大越好。如冰女是辅助英雄,补刀数低,助攻数高,当AI表现越接近人类在相同时间的平均值时,获得的奖励越高

    3)团队精神:设置一个“团队精神”超参数,平衡AI个体收益和团队收益之间的奖励权重

    4)探索与攻击肉山:在Open Five刚发布的时候,AI是不会主动去打肉山。但是在本次比赛中,AI频繁探索肉山视野(避免对手打肉山),并有了打肉山的行为。训练技巧是在训练中给肉山随机血量,那么AI探索肉山并遇见肉山随机到低血量的时候,很容易低成本获得高奖励,从而鼓励AI开始关注肜

    5)眼:训练AI买眼与插眼控制视野太过复杂(眼在游戏中是有限的稀缺资源,插眼需要对游戏未来数分钟局势的判断,同时插眼需要付出较高的时间成本和生命危险,因此计算插眼路线也十分困难),所以目前直接通过脚本的形式写入AI,让AI有眼的时候就买。眼会占格子,当AI格子满的时候,就会插眼(所以比赛中AI的眼位比较奇特)

 

 

这篇关于【数据应用案例】openFive dota5v5战胜人类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140959

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像