【数据应用技巧】NLP领域的预训练之风

2024-09-06 04:08

本文主要是介绍【数据应用技巧】NLP领域的预训练之风,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例来源:@AI科技评论 @集智翻译组 @人工智能LeadAI

案例地址:https://mp.weixin.qq.com/s/NCLkZqdmqY9lm5BhyEcLXQ;https://www.sohu.com/a/233269391_395209;https://arxiv.org/pdf/1801.06146.pdf;http://wemedia.ifeng.com/64207141/wemedia.shtml;https://baijiahao.baidu.com/s?id=1607601183904724013&wfr=spider&for=pc;http://www.igeek.com.cn/article-1176781-2.html

 

0. 背景:ImageNet带来了数据预训练的风,通过在ImageNet数据集上训练得到的网络权重,可以迁移学习到较少标注集较高标注成本的领域。这股思想也进入了NLP领域,本文介绍几种预训练方法。

目前NLP领域的预训练方法有:

    1)word2vec

    2)ULMFit

    3)ELMo

    4)Open AI Transformer

    对标ImageNet,目前NLP领域的主流标注数据集有:

    1)斯坦福问答数据集(SQuAD):10万多对问答对

    2)斯坦福自然推理语料库(SNLI):57万对英语句子对

    3)WMT:4千万对 英语-法语 翻译句子对

    4)WikiTest-2:维基百科文本

    这些语料库都有一定的缺陷(如人工标注员倾向于通过否定的方式创造新的句子对),不一定同ImageNet一样,可以表征所有自然语言处理的问题空间,削弱了使用这些语料库提取特征的泛化能力

 

1. word2vec

    1)预训练获得词嵌入,然后将词嵌入作为特征输出神经网络的第一层。是一种浅层网络的特征表示方法,类比于cv中对浅层神经元对物体边缘的表示

 

2. ULMFit(Universal Language Model Fine-tuning)

    1)LM pre-training:在大型语料库上训练word的表达

    2)LM fine-tuning:在特定语料上训练word在深层网络中的表达

    3)Classifier fine-tuning:上层分类器

 

3. ELMo(Embeddings from Language Models,深层语境化词表征)

    1)特点:

        a. 输入是字符而不是词,因此可以利用子字词单元来计算有意义的表征,即使对于词典外的词也是如此

        b. 词向量不是一成不变的,而是根据上下文不同而变化。如“我买了富士康生产的苹果”与“我吃了一个富士苹果”中“苹果”并不是一个事物

    2)方法:首先在大文本语料库上预训练了一个深度双向语言模型(biLM),然后把根据它的内部状态学到的函数作为词向量。语言模型的不同层对单词上的不同类型信息进行编码(例如,词语标注由biLSTM的较低层完成预测,而词义消歧在较高层中更好地编码)。 把所有层连接起来,可以自由组合各种文字表征,以提高下游任务的性能表现

 

4. Open AI Transformer

    1)在大规模数据集上用无监督的方式训练一个transformer模型(参:https://blog.csdn.net/allwefantasy/article/details/50663524)

    2)在小规模有监督数据集上进行微调

 

5. NLP预训练展望:

    1)可以用主流语言语料库做预训练,迁移学习到标注资源特别匮乏的小语种

    2)文本中的常识性信息,有一些不能从文本上下文中获得,而是要结合外部额外信息,这也是进一步优化预训练能力的点

 

这篇关于【数据应用技巧】NLP领域的预训练之风的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140956

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个