【Python时序预测系列】高创新模型:基于xlstm模型实现单变量时间序列预测(案例+源码)

本文主要是介绍【Python时序预测系列】高创新模型:基于xlstm模型实现单变量时间序列预测(案例+源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是我的第351篇原创文章。

一、引言

LSTM在1990年代被提出,用以解决循环神经网络(RNN)的梯度消失问题。LSTM在多种领域取得了成功,但随着Transformer技术的出现,其地位受到了挑战。如果将LSTM扩展到数十亿参数,并利用现代大型语言模型(LLM)的技术,同时克服LSTM的已知限制,我们能在语言建模上走多远?

论文介绍了两种新的LSTM变体:sLSTM(具有标量记忆和更新)和mLSTM(具有矩阵记忆和协方差更新规则),并将它们集成到残差块中,形成xLSTM架构。

sLSTM:引入了指数门控和新的存储混合技术,允许LSTM修订其存储决策。

mLSTM:将LSTM的记忆单元从标量扩展到矩阵,提高了存储容量,并引入了协方差更新规则,使得mLSTM可以完全并行化。

xLSTM架构:通过将sLSTM和mLSTM集成到残差块中,构建了xLSTM架构。

二、实现过程

2.1 加载数据

data = pd.read_csv('data.csv', usecols=[1], engine='python')
dataset = data.values.astype('float32')

2.2 归一化处理

scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)

2.3 划分数据集

train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :]trainX, trainY = create_dataset(train, seq_len)
testX, testY = create_dataset(test, seq_len)# Create data loaders
train_dataset = TensorDataset(trainX, trainY)
test_dataset = TensorDataset(testX, testY)train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

2.4 构建模型

models = {"xLSTM": xLSTM(input_size, head_size, num_heads, batch_first=True, layers='msm'),"LSTM": nn.LSTM(input_size, head_size, batch_first=True, proj_size=input_size),"sLSTM": sLSTM(input_size, head_size, num_heads, batch_first=True),"mLSTM": mLSTM(input_size, head_size, num_heads, batch_first=True)
}

2.5 训练模型

定义训练函数:

def train_model(model, model_name, epochs=20, learning_rate=0.01):criterion = nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)train_losses = []for epoch in tqdm(range(epochs), desc=f'Training {model_name}'):model.train()epoch_loss = 0for i, (inputs, targets) in enumerate(train_loader):optimizer.zero_grad()outputs, _ = model(inputs)outputs = outputs[:, -1, :]loss = criterion(outputs, targets)loss.backward()optimizer.step()epoch_loss += loss.item()train_losses.append(epoch_loss / len(train_loader))plt.plot(train_losses, label=model_name)plt.title(f'Training Loss for {model_name}')plt.xlabel('Epochs')plt.ylabel('MSE Loss')plt.legend()plt.show()return model, train_losses

开始训练:

trained_models = {}
all_train_losses = {}
for model_name, model in models.items():trained_models[model_name], all_train_losses[model_name] = train_model(model, model_name)

绘制所有模型的损失函数曲线:

plt.figure()
for model_name, train_losses in all_train_losses.items():plt.plot(train_losses, label=model_name)# Plot all model losses compared
plt.title('Training Losses for all Models')
plt.xlabel('Epochs')
plt.ylabel('MSE Loss')
plt.legend()
plt.show()

图片

2.6 预测评估

预测:

def evaluate_model(model, data_loader):model.eval()predictions = []with torch.no_grad():for inputs, _ in data_loader:outputs, _ = model(inputs)predictions.extend(outputs[:, -1, :].numpy())return predictionstest_predictions = {}
for model_name, model in trained_models.items():test_predictions[model_name] = evaluate_model(model, test_loader)

预测结果可视化:

# Plot predictions for each model
for model_name, preds in test_predictions.items():# Inverse transform the predictions and actual valuespreds = scaler.inverse_transform(np.array(preds).reshape(-1, 1))actual = scaler.inverse_transform(testY.numpy().reshape(-1, 1))plt.figure()plt.plot(actual, label='Actual')plt.plot(preds, label=model_name + ' Predictions')plt.title(f'{model_name} Predictions vs Actual')plt.legend()plt.show()# Plot all model predictions compared
plt.figure()
plt.plot(actual, label='Actual')
for model_name, preds in test_predictions.items():# Inverse transform the predictionspreds = scaler.inverse_transform(np.array(preds).reshape(-1, 1))plt.plot(preds, label=model_name + ' Predictions')plt.title('All Models Predictions vs Actual')
plt.legend()
plt.show()

结果:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。​​​​​​​

这篇关于【Python时序预测系列】高创新模型:基于xlstm模型实现单变量时间序列预测(案例+源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140859

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T