【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提

2024-09-05 22:52

本文主要是介绍【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024年国赛B题解题思路

问题 1: 抽样检测方案设计

【题目分析】

分析:

  • 目标是设计一个高效的抽样检测方案,在尽量少的样本数量下,确保在高信度水平下做出正确的接受或拒收决策。
  • 需要处理两个不同的信度要求,这对样本量的计算提出了挑战。

思路:

  • 贝叶斯抽样优化:可以使用贝叶斯方法结合贝叶斯抽样优化(Bayesian Optimization)来动态调整样本量,以达到所需的信度水平。通过将次品率建模为贝叶斯后验分布,可以逐步减少样本量,同时保证决策的可靠性。
  • 自适应序贯抽样:使用逐步抽样方法,根据初始样本的检测结果动态调整后续样本量,优化检测成本和时间。
  • 蒙特卡洛模拟:模拟大量的抽样检测场景,估计在不同样本量下达成信度要求的概率,找到最小样本量的解决方案。

【解题思路】

目标

设计一个抽样检测方案,以确定是否接受供应商提供的零配件,要求在尽可能少的检测次数下达到两个信度标准:

  1. 在 95% 信度下认定零配件次品率超过标称值(拒收)。
  2. 在 90% 信度下认定零配件次品率不超过标称值(接收)。

建模过程

  1. 定义变量和假设
    • 设次品率为p ,标称次品率为p0=0.10 (即10%)。
    • 抽样样本量为n ,检测出次品的数量为 x。
    • 我们需要对p  进行假设检验,并根据检验结果决定是否接受或拒收。

    2. 抽样检测模型

  • 根据二项分布,我们有
  • 检验假设:

原假设

备择假设(用于拒收的情况)

  • 使用正态近似来简化问题,当 n较大时, 可近似为正态分布:

  • 标准化后的检测统计量为:

3. 检验条件

  • 我们设定显著性水平α  对应的信度为1-α 。
  • 对于拒收情况,信度为 95%,则 α=0.05。
  • 计算临界值:,其中为标准正态分布的逆函数。
  • 对于接收情况,信度为 90%,则 α=0.10。

4. 计算样本量n

    • 拒收的决策规则:若 Z>Z0.05,则拒收。
    • 结合样本量的计算公式,我们得到:

  • 通过展开可以得到对 n 的不等式:

  • 为简化计算,可以迭代求解n。

5. 智能优化算法引入

  • 为了优化样本量 n,引入贝叶斯优化。贝叶斯优化是一种基于高斯过程(Gaussian Process)的黑箱优化方法,可以在不确定的环境下高效找到最优参数。
  • 步骤
    1. 定义目标函数:最小化检测成本 ,其中 c 为单次检测成本。
    2. 目标函数中包含信度约束,使用贝叶斯优化逐步逼近最优的 n。
    3. 通过模拟不同的样本量 n,评估在95%和90%信度下的检测成功率,并调整 n 使得目标函数最小。

6. 贝叶斯优化流程

    • 初始化样本集,随机选择 n0 的样本量进行检测,计算检测成本。
    • 使用高斯过程拟合当前的检测结果。
    • 通过高斯过程预测新的 n,并计算期望改进(Expected Improvement, EI)。
    • 选择使期望改进最大的 n 作为下一步的检测样本量。
    • 更新高斯过程模型,重复迭代,直到找到满足信度约束且成本最低的样本量n* 。

7. 最终方案

  • 通过贝叶斯优化得到的最优样本量 n*,将其应用于实际的检测流程中,以确保在满足信度要求的情况下尽可能减少检测次数。

公式总结

检测统计量:

临界值条件:Z>Z0.05拒收,Z<Z0.10接受

样本量不等式:

目标函数最小化:

Python参考代码】

# 定义检测成本函数
def detection_cost(n, c):return n * c# 定义统计检验函数
def hypothesis_test(n, p0, alpha, x):# 计算标准化的Z统计量p_hat = x / nZ = (p_hat - p0) / np.sqrt(p0 * (1 - p0) / n)# 计算临界值Z_alpha = norm.ppf(1 - alpha)return Z, Z_alpha# 定义目标函数,贝叶斯优化用
def objective(n):n = int(n[0])  # 样本量必须是整数c = 2  # 单次检测成本设为2元(可以根据具体情况调整)p0 = 0.10  # 标称次品率alpha_reject = 0.05  # 拒收信度为95%alpha_accept = 0.10  # 接收信度为90%# 模拟检测x个次品x = binom.rvs(n, p0)  # 假设次品率刚好为标称值# 进行拒收和接收检验Z_reject, Z_alpha_reject = hypothesis_test(n, p0, alpha_reject, x)Z_accept, Z_alpha_accept = hypothesis_test(n, p0, alpha_accept, x)# 判断是否满足信度条件if Z_reject > Z_alpha_reject and Z_accept < Z_alpha_accept:# 若同时满足拒收和接收信度要求,则计算成本cost = detection_cost(n, c)else:# 若不满足信度要求,则设为较高的惩罚成本cost = detection_cost(n, c) + 1000  # 惩罚项return costfrom skopt.space import Real, Integer# 定义优化参数空间
param_space = [Integer(10, 1000, name='n')]# 使用贝叶斯优化进行最小化
result = gp_minimize(objective, param_space, n_calls=50, random_state=0)# 输出最优样本量和最小检测成本
print(f"Optimal sample size: {result.x[0]}")
print(f"Minimum detection cost: {result.fun}")
# 绘制优化过程的收敛情况
plot_convergence(result)
plt.title('Convergence Plot of Bayesian Optimization')
plt.xlabel('Number of Calls')
plt.ylabel('Objective Function Value (Cost)')
plt.grid(True)
plt.show()# 绘制样本量与检测成本的关系
sample_sizes = np.arange(10, 1000, 10)
costs = [objective([n]) for n in sample_sizes]plt.figure(figsize=(10, 6))
plt.plot(sample_sizes, costs, '-o', markersize=4, color='b', label='Detection Cost')
plt.axvline(result.x[0], color='r', linestyle='--', label=f'Optimal Sample Size: {result.x[0]}')
plt.title('Detection Cost vs. Sample Size')
plt.xlabel('Sample Size')
plt.ylabel('Detection Cost')
plt.legend()
plt.grid(True)
plt.show()

这篇关于【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140292

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Java强制转化示例代码详解

《Java强制转化示例代码详解》:本文主要介绍Java编程语言中的类型转换,包括基本类型之间的强制类型转换和引用类型的强制类型转换,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录引入基本类型强制转换1.数字之间2.数字字符之间引入引用类型的强制转换总结引入在Java编程语言中,类型转换(无论

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

Vue 调用摄像头扫描条码功能实现代码

《Vue调用摄像头扫描条码功能实现代码》本文介绍了如何使用Vue.js和jsQR库来实现调用摄像头并扫描条码的功能,通过安装依赖、获取摄像头视频流、解析条码等步骤,实现了从开始扫描到停止扫描的完整流... 目录实现步骤:代码实现1. 安装依赖2. vue 页面代码功能说明注意事项以下是一个基于 Vue.js