力扣96-不同的二叉搜索树(Java详细题解)

2024-09-05 19:44

本文主要是介绍力扣96-不同的二叉搜索树(Java详细题解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:96. 不同的二叉搜索树 - 力扣(LeetCode)

前情提要:

因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。

dp五部曲。

1.确定dp数组和i下标的含义。

2.确定递推公式。

3.dp初始化。

4.确定dp的遍历顺序。

5.如果没有ac打印dp数组 利于debug。

每一个dp题目如果都用这五步分析清楚,那么这道题就能解出来了。

题目思路:

该题要求n个节点所组成的二叉搜索树有多少种。

首先我们得知道什么是二叉树搜索树。

二叉树搜索树首先是一个二叉树,即每一个节点最多只有俩个子节点,且左孩子的值都比父节点小,右孩子的值都比父节点大。

这是二叉树搜索的特性,一定要利用起来。

然后我们在运用递归五部曲来进行分析。

1.确定dp数组和i下标的含义。

dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

以下分析如果想不清楚,就来回想一下dp[i]的定义

2.确定递推公式。

确定递推公式之前,我们先找规律。

当n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

在这里插入图片描述

在这里插入图片描述

来看看n为3的时候,有哪几种情况。
显然由有三种情况

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]。

在这里插入图片描述

由此可得当i为3时,dp[3]的递推关系。

所以dp[i] += dp[ j - 1] * dp[ i - j];

j是指当j为根节点的情况。i为3时需要根节点i为 1,2,3的这些情况,所以我们需要一个j来遍历我们根节点小与等于i的这些情况。

那dp[j - 1]是什么呢,其实就是当j 为根节点时,他的左子树的情况,当j为根节点 他的左子树节点肯定比j小。即有j - 1个节点所构成的二叉搜索树的个数。

dp[i - j]就是他的右子树的情况,他的右子树肯定比j大,因为是用j来遍历i,所以他的右子树的节点就是[i - j]了。

这样我们就得到了递推公式。

3.dp初始化。

我们应该初始化dp[0]还是dp[1]或者dp[2]呢?

我们应该初始化dp[0] = 1。

为啥为1不为0呢?

我们看看dp数组的含义。dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

0个节点其实也是二叉搜索树,即空节点也是一种二叉搜索树,所以我们dp[0] = 1。

其实dp[1]可以由dp[0]来推出。当只有一个节点时,他的根节点只有为1一种情况,他的左右节点都为dp[0]所以dp[1] = dp[0] * dp[0] = 1。

4.确定dp的遍历顺序。

由递推公式,我们可以看出dp[i] 是需要dp[i - j]的,即先要确定[i - j],才能确定i。

所以我们的遍历顺序一定是要从前往后的。

5.如果没有ac打印dp数组 利于debug。

最后dp[i]模拟后情况就是这样,大家可以打印dp数组对着看看哪与你的不符。

在这里插入图片描述

分析完毕,我们来看看最终代码。

class Solution {public int numTrees(int n) {//递推要不断的找规律 最后确定递推公式//dp[i] 表示的就是i个节点所构成二叉搜索树的种树int [] dp = new int [n + 1];dp[0] = 1;for(int i = 1;i <= n;i ++){//这里面的j 其实就相等于当头节点为j的情况//等于它左子树的情况乘以右子树的情况for(int j = 1;j <= i ;j ++){dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
}

怎么样,分析过程很复杂,而代码缺不超过20行,递推代码是不是很精简。

所以面对dp问题,我们要善于找规律,并按照动规五部曲走就好啦。

这一篇博客就到这了,如果你有什么疑问和想法可以打在评论区,或者私信我。

我很乐意为你解答。那么我们下篇再见!

这篇关于力扣96-不同的二叉搜索树(Java详细题解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139884

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏