力扣96-不同的二叉搜索树(Java详细题解)

2024-09-05 19:44

本文主要是介绍力扣96-不同的二叉搜索树(Java详细题解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:96. 不同的二叉搜索树 - 力扣(LeetCode)

前情提要:

因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。

dp五部曲。

1.确定dp数组和i下标的含义。

2.确定递推公式。

3.dp初始化。

4.确定dp的遍历顺序。

5.如果没有ac打印dp数组 利于debug。

每一个dp题目如果都用这五步分析清楚,那么这道题就能解出来了。

题目思路:

该题要求n个节点所组成的二叉搜索树有多少种。

首先我们得知道什么是二叉树搜索树。

二叉树搜索树首先是一个二叉树,即每一个节点最多只有俩个子节点,且左孩子的值都比父节点小,右孩子的值都比父节点大。

这是二叉树搜索的特性,一定要利用起来。

然后我们在运用递归五部曲来进行分析。

1.确定dp数组和i下标的含义。

dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

以下分析如果想不清楚,就来回想一下dp[i]的定义

2.确定递推公式。

确定递推公式之前,我们先找规律。

当n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

在这里插入图片描述

在这里插入图片描述

来看看n为3的时候,有哪几种情况。
显然由有三种情况

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]。

在这里插入图片描述

由此可得当i为3时,dp[3]的递推关系。

所以dp[i] += dp[ j - 1] * dp[ i - j];

j是指当j为根节点的情况。i为3时需要根节点i为 1,2,3的这些情况,所以我们需要一个j来遍历我们根节点小与等于i的这些情况。

那dp[j - 1]是什么呢,其实就是当j 为根节点时,他的左子树的情况,当j为根节点 他的左子树节点肯定比j小。即有j - 1个节点所构成的二叉搜索树的个数。

dp[i - j]就是他的右子树的情况,他的右子树肯定比j大,因为是用j来遍历i,所以他的右子树的节点就是[i - j]了。

这样我们就得到了递推公式。

3.dp初始化。

我们应该初始化dp[0]还是dp[1]或者dp[2]呢?

我们应该初始化dp[0] = 1。

为啥为1不为0呢?

我们看看dp数组的含义。dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

0个节点其实也是二叉搜索树,即空节点也是一种二叉搜索树,所以我们dp[0] = 1。

其实dp[1]可以由dp[0]来推出。当只有一个节点时,他的根节点只有为1一种情况,他的左右节点都为dp[0]所以dp[1] = dp[0] * dp[0] = 1。

4.确定dp的遍历顺序。

由递推公式,我们可以看出dp[i] 是需要dp[i - j]的,即先要确定[i - j],才能确定i。

所以我们的遍历顺序一定是要从前往后的。

5.如果没有ac打印dp数组 利于debug。

最后dp[i]模拟后情况就是这样,大家可以打印dp数组对着看看哪与你的不符。

在这里插入图片描述

分析完毕,我们来看看最终代码。

class Solution {public int numTrees(int n) {//递推要不断的找规律 最后确定递推公式//dp[i] 表示的就是i个节点所构成二叉搜索树的种树int [] dp = new int [n + 1];dp[0] = 1;for(int i = 1;i <= n;i ++){//这里面的j 其实就相等于当头节点为j的情况//等于它左子树的情况乘以右子树的情况for(int j = 1;j <= i ;j ++){dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
}

怎么样,分析过程很复杂,而代码缺不超过20行,递推代码是不是很精简。

所以面对dp问题,我们要善于找规律,并按照动规五部曲走就好啦。

这一篇博客就到这了,如果你有什么疑问和想法可以打在评论区,或者私信我。

我很乐意为你解答。那么我们下篇再见!

这篇关于力扣96-不同的二叉搜索树(Java详细题解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139884

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc