力扣96-不同的二叉搜索树(Java详细题解)

2024-09-05 19:44

本文主要是介绍力扣96-不同的二叉搜索树(Java详细题解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:96. 不同的二叉搜索树 - 力扣(LeetCode)

前情提要:

因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。

dp五部曲。

1.确定dp数组和i下标的含义。

2.确定递推公式。

3.dp初始化。

4.确定dp的遍历顺序。

5.如果没有ac打印dp数组 利于debug。

每一个dp题目如果都用这五步分析清楚,那么这道题就能解出来了。

题目思路:

该题要求n个节点所组成的二叉搜索树有多少种。

首先我们得知道什么是二叉树搜索树。

二叉树搜索树首先是一个二叉树,即每一个节点最多只有俩个子节点,且左孩子的值都比父节点小,右孩子的值都比父节点大。

这是二叉树搜索的特性,一定要利用起来。

然后我们在运用递归五部曲来进行分析。

1.确定dp数组和i下标的含义。

dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

以下分析如果想不清楚,就来回想一下dp[i]的定义

2.确定递推公式。

确定递推公式之前,我们先找规律。

当n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

在这里插入图片描述

在这里插入图片描述

来看看n为3的时候,有哪几种情况。
显然由有三种情况

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]。

在这里插入图片描述

由此可得当i为3时,dp[3]的递推关系。

所以dp[i] += dp[ j - 1] * dp[ i - j];

j是指当j为根节点的情况。i为3时需要根节点i为 1,2,3的这些情况,所以我们需要一个j来遍历我们根节点小与等于i的这些情况。

那dp[j - 1]是什么呢,其实就是当j 为根节点时,他的左子树的情况,当j为根节点 他的左子树节点肯定比j小。即有j - 1个节点所构成的二叉搜索树的个数。

dp[i - j]就是他的右子树的情况,他的右子树肯定比j大,因为是用j来遍历i,所以他的右子树的节点就是[i - j]了。

这样我们就得到了递推公式。

3.dp初始化。

我们应该初始化dp[0]还是dp[1]或者dp[2]呢?

我们应该初始化dp[0] = 1。

为啥为1不为0呢?

我们看看dp数组的含义。dp[i] 就是 由i个节点构成的不相同的二叉搜索树的种数。

0个节点其实也是二叉搜索树,即空节点也是一种二叉搜索树,所以我们dp[0] = 1。

其实dp[1]可以由dp[0]来推出。当只有一个节点时,他的根节点只有为1一种情况,他的左右节点都为dp[0]所以dp[1] = dp[0] * dp[0] = 1。

4.确定dp的遍历顺序。

由递推公式,我们可以看出dp[i] 是需要dp[i - j]的,即先要确定[i - j],才能确定i。

所以我们的遍历顺序一定是要从前往后的。

5.如果没有ac打印dp数组 利于debug。

最后dp[i]模拟后情况就是这样,大家可以打印dp数组对着看看哪与你的不符。

在这里插入图片描述

分析完毕,我们来看看最终代码。

class Solution {public int numTrees(int n) {//递推要不断的找规律 最后确定递推公式//dp[i] 表示的就是i个节点所构成二叉搜索树的种树int [] dp = new int [n + 1];dp[0] = 1;for(int i = 1;i <= n;i ++){//这里面的j 其实就相等于当头节点为j的情况//等于它左子树的情况乘以右子树的情况for(int j = 1;j <= i ;j ++){dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
}

怎么样,分析过程很复杂,而代码缺不超过20行,递推代码是不是很精简。

所以面对dp问题,我们要善于找规律,并按照动规五部曲走就好啦。

这一篇博客就到这了,如果你有什么疑问和想法可以打在评论区,或者私信我。

我很乐意为你解答。那么我们下篇再见!

这篇关于力扣96-不同的二叉搜索树(Java详细题解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139884

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Spring MVC如何设置响应

《SpringMVC如何设置响应》本文介绍了如何在Spring框架中设置响应,并通过不同的注解返回静态页面、HTML片段和JSON数据,此外,还讲解了如何设置响应的状态码和Header... 目录1. 返回静态页面1.1 Spring 默认扫描路径1.2 @RestController2. 返回 html2

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为