LRU算法 - LRU Cache

2024-09-05 17:08
文章标签 算法 cache lru

本文主要是介绍LRU算法 - LRU Cache,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个是比较经典的LRU(Least recently used,最近最少使用)算法,算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。 一般应用在缓存替换策略中。其中的”使用”包括访问get和更新set。

LRU算法

LRU是Least Recently Used 近期最少使用算法。内存管理的一种页面置换算法,对于在内存中但又不用的数据快(内存块)叫做LRU,Oracle会根据那些数据属于LRU而将其移出内存而腾出空间来加载另外的数据,一般用于大数据处理的时候很少使用的数据那么就直接请求数据库,如果经常请求的数据就直接在缓存里面读取。

最近最久未使用(LRU)的页面置换算法,是根据页面调入内存后的使用情况进行决策的。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU置换算法是选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间t,当须淘汰一个页面时,选择现有页面中其t值最大的,即最近最久未使用的页面予以淘汰(可以使用这种方法去实现)。

LRU的实现

1) 可利用一个栈来保存当前使用的各个页面的页面号。每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号。(由于效率过低在leetCode上超时,代码未贴出)

2) 也可以过双向链表和HashMap来实现。

双向链表用于存储数据结点,并且它是按照结点最近被使用的时间来存储的。 如果一个结点被访问了, 我们有理由相信它在接下来的一段时间被访问的概率要大于其它结点。于是, 我们把它放到双向链表的头部。当我们往双向链表里插入一个结点, 我们也有可能很快就会使用到它,同样把它插入到头部。 我们使用这种方式不断地调整着双向链表,链表尾部的结点自然也就是最近一段时间, 最久没有使用到的结点。那么,当我们的Cache满了, 需要替换掉的就是双向链表中最后的那个结点(不是尾结点,头尾结点不存储实际内容)。

如下是双向链表示意图,注意头尾结点不存储实际内容:

头 --> 结 --> 结 --> 结 --> 尾
结     点     点     点     结
点 <-- 1  <-- 2 <-- 3  <-- 点

假如上图Cache已满了,我们要替换的就是结点3。

哈希表的作用是什么呢?如果没有哈希表,我们要访问某个结点,就需要顺序地一个个找, 时间复杂度是O(n)。使用哈希表可以让我们在O(1)的时间找到想要访问的结点, 或者返回未找到。

java实现

LinkedHashMap恰好是通过双向链表实现的java集合类,它的一大特点是,以当某个位置被命中,它就会通过调整链表的指向,将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。关于 LinkedHashMap 的具体实现,可以参考此文:LinkedHashMap的实现原理。

假定现有一进程所访问的页面序列为:

4,7,0,7,1,0,1,2,1,2,6

随着进程的访问,栈中页面号的变化情况如图所示。在访问页面6时发生了缺页,此时页面4是最近最久未被访问的页,应将它置换出去。

28151727-5c27ca2146414bbe889397fcfc855863

题目的要求是实现下面三个方法:

class LRUCache{
public:
LRUCache(int capacity) {
}
int get(int key) {
}
void set(int key, int value) {
}
};

C++实现

// A simple LRU cache written in C++
// Hash map + doubly linked list
#include <iostream>
#include <vector>
#include <ext/hash_map>
using namespace std;
using namespace __gnu_cxx;
template <class K, class T>
struct Node{
K key;
T data;
Node *prev, *next;
};
template <class K, class T>
class LRUCache{
public:
LRUCache(size_t size){
entries_ = new Node<K,T>[size];
for(int i=0; i<size; ++i)// 存储可用结点的地址
free_entries_.push_back(entries_+i);
head_ = new Node<K,T>;
tail_ = new Node<K,T>;
head_->prev = NULL;
head_->next = tail_;
tail_->prev = head_;
tail_->next = NULL;
}
~LRUCache(){
delete head_;
delete tail_;
delete[] entries_;
}
void Put(K key, T data){
Node<K,T> *node = hashmap_[key];
if(node){ // node exists
detach(node);
node->data = data;
attach(node);
}
else{
if(free_entries_.empty()){// 可用结点为空,即cache已满
node = tail_->prev;
detach(node);
hashmap_.erase(node->key);
}
else{
node = free_entries_.back();
free_entries_.pop_back();
}
node->key = key;
node->data = data;
hashmap_[key] = node;
attach(node);
}
}
T Get(K key){
Node<K,T> *node = hashmap_[key];
if(node){
detach(node);
attach(node);
return node->data;
}
else{// 如果cache中没有,返回T的默认值。与hashmap行为一致
return T();
}
}
private:
// 分离结点
void detach(Node<K,T>* node){
node->prev->next = node->next;
node->next->prev = node->prev;
}
// 将结点插入头部
void attach(Node<K,T>* node){
node->prev = head_;
node->next = head_->next;
head_->next = node;
node->next->prev = node;
}
private:
hash_map<K, Node<K,T>* > hashmap_;
vector<Node<K,T>* > free_entries_; // 存储可用结点的地址
Node<K,T> *head_, *tail_;
Node<K,T> *entries_; // 双向链表中的结点
};
int main(){
hash_map<int, int> map;
map[9]= 999;
cout<<map[9]<<endl;
cout<<map[10]<<endl;
LRUCache<int, string> lru_cache(100);
lru_cache.Put(1, "one");
cout<<lru_cache.Get(1)<<endl;
if(lru_cache.Get(2) == "")
lru_cache.Put(2, "two");
cout<<lru_cache.Get(2);
return 0;
}

参考:http://hawstein.com/posts/lru-cache-impl.html;http://www.cnblogs.com/LZYY/p/3447785.html

这篇关于LRU算法 - LRU Cache的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139554

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/