递归算法专题——真正理解递归和正确使用递归力扣实战应用

2024-09-05 16:28

本文主要是介绍递归算法专题——真正理解递归和正确使用递归力扣实战应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、使用递归

1.1 如何理解递归

1.2 如何写好一个递归算法

2、 算法应用【leetcode】

2.1 题一:汉诺塔问题【面试题】

 2.1.1 算法原理

 2.1.2 算法代码

2.2 题二:合并两个有序链表

2.2.1 算法原理

2.2.2 算法代码 

2.3 题三:反转链表

2.3.1 算法原理

2.3.2 算法代码

 2.4 题四:两两交换链表中的节点

2.4.1 算法原理 

2.4.2 算法代码

2.5 题五:Pow(x,n)

2.5.1 算法原理

2.5.2 算法代码


1、使用递归

1.1 如何理解递归

大家都知道,递归其实就是自己调用自己。

但是,为什么要使用递归呢?换句话说,为什么要自己调用自己呢?我们应该在什么情况下使用递归呢?又如何才能写好一个递归呢?

为什么使用递归,其实就是一个主问题中包含了相同问题的子问题,而子问题又包含了相同问题的子问题,即:出现了重复的子问题进而我们只需要将焦点放在这个重复的子问题上,使用一个相同的方案来解决整个主问题,这就是使用递归的原因。

在理解递归后,要想得心应手的使用递归算法解题,我们必须以宏观的角度看待递归:

  1. 不要在意递归的细节展开图(因为我们知道,展开图一定是正确的)
  2. 将递归函数当成一个黑盒
  3. 无条件相信这个黑盒一定能完成任务,一定能给我们带来想要的结果

1.2 如何写好一个递归算法

一个递归中,有三个要素是必不可少的:1.函数头 2.函数体 3.函数出口(回退条件)

所以要想写好递归算法,那必须清楚的知道这三个要素该如何正确设计与书写:

  1. 找到重复的子问题 --> 函数头的设计
  2. 只关心其中一个子问题是如何解决的 --> 函数体的书写
  3. 注意递归函数的出口

 虽然以上均为口头理论知识,但却尤为重要,当我们能够以宏观角度看待递归时,那递归的书写和使用将会非常得心应手。


2、 算法应用【leetcode】

2.1 题一:汉诺塔问题【面试题】

. - 力扣(LeetCode)

2.1.1 算法原理

通过画图可以发现,移动盘子的过程其实就是一个重复的子问题,因此我们使用递归求解。

【注意:一定要以宏观角度看待递归,相信这个递归函数一定能够完成任务,不要在意细节展开图,否则做题会很费劲】

  • 1.重复子问题 -> 函数头

将x柱子上的一些盘子,借助y柱子,转移到z柱子上: dfs(x,y,z, n);

  • 2.只关注重复子问题中的其中一个子问题 -> 函数体 

①现将x柱子上的n-1个盘子借助c盘转移到y柱子上,②再将x柱子上最后一个盘子转移到z柱子上,③最后再将y柱子上的n-1个盘子借助x柱子转移到z柱子上:①dfs(x, z, y, n-1); ②x.back()-> z;③dfs(y,x,z,n-1);

  • 3.函数出口

n==1时,x.back() 转移到z柱子上;

 2.1.2 算法代码

class Solution {public void hanota(List<Integer> a, List<Integer> b, List<Integer> c) {dfs(a, b, c, a.size());}public void dfs(List<Integer> a, List<Integer> b, List<Integer> c, int n) {if(n == 1) {//注意//递归到最深处才会移动盘子//移动的应该是柱子最上面的一个盘子c.add(a.remove(a.size() - 1));return;}dfs(a, c, b, n - 1);//同上,在递归最深处,移动的是最上面的一个盘子c.add(a.remove(a.size() - 1));dfs(b, a, c, n - 1);}
}

2.2 题二:合并两个有序链表

. - 力扣(LeetCode)

2.2.1 算法原理

为什么可以使用递归?选出值最小的节点,接着合并剩下的链表和另外一个链表;再选出值次小的节点,接着合并剩下的链表和另外一个链表;......依然是重复的子问题,可以递归求解。

同样,站在宏观角度看待递归。

  1. 先选出值最小节点,接着让这个递归函数合并剩下的链表并返回合并后的头结点,(我不管它怎么做到的,相信它一定可以做到)
  2. 接着,将最小的节点和返回后的(合并好的)链表相连接
  3. 返回头结点
  4. 函数出口:当为节点不存在时(node == null),说明不需要合并,为函数出口,递归回退

2.2.2 算法代码 

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {if(list1 == null) return list2;if(list2 == null) return list1;if(list1.val < list2.val) {list1.next = mergeTwoLists(list1.next, list2);return list1;}else {list2.next = mergeTwoLists(list1, list2.next);return list2;}}
}

2.3 题三:反转链表

 . - 力扣(LeetCode)

2.3.1 算法原理

  1. 让递归函数反转链表(宏观角度,相信它一定可以完成)
  2. 并且递归函数返回反转链表后的头结点
  3. 修改当前节点与反转后链表的指向

2.3.2 算法代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseList(ListNode head) {if(head == null || head.next == null) return head;ListNode newHead = reverseList(head.next);head.next.next = head;head.next = null;return newHead;}
}

 2.4 题四:两两交换链表中的节点

. - 力扣(LeetCode)

2.4.1 算法原理 

  1. 宏观角度,先把前两个节点看做整体
  2. 使用递归函数两两交换这两个节点后的节点,并返回交换后链表的头结点
  3. 再反转前两个节点并且修改链表的指向关系
  4. 当节点为空或者只有一个节点时,为函数出口

 

2.4.2 算法代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode swapPairs(ListNode head) {if(head == null || head.next == null) return head;ListNode tmp = swapPairs(head.next.next);ListNode newHead = head.next;newHead.next = head;head.next = tmp;return newHead;}
}

2.5 题五:Pow(x,n)

. - 力扣(LeetCode)

2.5.1 算法原理

这里再次强调一下:一定要以宏观的角度看待递归!!!把递归函数当做一个黑盒,相信这个黑盒一定能够完成相关任务!

 一个数的n次方,就是这个数的n/2次方* 这个数的n/2次方;

一个数的n/2次方,就是这个数的n/4次方* 这个数的n/4次方;

一个数的n/4次方,就是这个数的n/8次方* 这个数的n/8次方;

.........

一个数的0次方,就是1;

综上所示,出现了重复的子问题,我们可以使用递归算法解题。

  1. 站在宏观角度,要得到当前数的n次方,就要得到其n/2次方(tmp),而tmp*tmp就是当前数的n次方
  2. 而递归函数就要为我们返回数的n/2次方(tmp),我们要无条件相信它。tmp = pow(x, n/2);
  3. 在n==1的函数当中,要得到0次方(n/2=0)时的数值,任何数的0次方为1,此时为函数出口,返回1
  4. 当n/2不能整除时,返回tmp*tmp*x即可
  5. 注意n为负数的情况,当成正数计算,最终返回其倒数即可

2.5.2 算法代码

class Solution {public double myPow(double x, int n) {return n < 0 ? 1 / pow(x, -n) : pow(x, n);}public double pow(double x, int n) {if(n == 0) return 1;//宏观角度看待递归,得到当前数n/2幂的值double tmp = pow(x, n / 2);return (n % 2 == 0) ? tmp * tmp : tmp * tmp * x;}
}

END

这篇关于递归算法专题——真正理解递归和正确使用递归力扣实战应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139466

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置