本文主要是介绍《数据结构(C语言版)第二版》第七章-查找(算法设计题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
习题1
试写出折半查找的递归算法。
#include <stdio.h>
#include <stdlib.h>#define Maxsize 100typedef int KeyType;
typedef char InfoType;typedef struct
{KeyType Key;InfoType OtherInfo;
}elem;typedef struct
{elem *R;int length;
}SSTable;void initSSTable(SSTable& ST);
int Search_Bin(SSTable ST, KeyType key, int low, int high);int main()
{SSTable ST = { NULL,0 };int i = 0;KeyType key = 0;int r = 0;char choice = '\0';initSSTable(ST);printf("请输入递增有序表中元素的个数:");scanf_s(" %d", &ST.length);for (i = 1; i <= ST.length; i++){printf("请输入第%d个元素的值:", i);scanf_s(" %d", &ST.R[i].Key);}while (1){printf("\n请输入要查找到数:");scanf_s(" %d", &key);r = Search_Bin(ST, key, 1, ST.length);if (r == -1){printf("%d查找失败。\n",key);}else{printf("%d的位置为:%d\n", key, r);}printf("是否继续?(y/Y)");scanf_s(" %c", &choice);if (choice != 'y' && choice != 'Y'){break;}}return 0;
}void initSSTable(SSTable& ST)
{ST.R = (elem*)malloc(sizeof(elem)* Maxsize);ST.length = 0;
}//折半查找 递归
int Search_Bin(SSTable ST, KeyType key, int low, int high)
{if (low > high){return -1;}int mid = (low + high) / 2;if (key == ST.R[mid].Key){return mid;}else if (key > ST.R[mid].Key){return Search_Bin(ST, key, mid + 1, high);}else{return Search_Bin(ST, key, low, mid - 1);}
}
习题2
试写一个判别给定二叉树是否为二叉排序树的算法。
#include <stdio.h>
#include <stdlib.h>typedef int KeyType;
typedef char InfoType;typedef struct
{KeyType Key;InfoType OtherInfo;
}ElemType;typedef struct BTNode
{ElemType data;struct BTNode* lchild;struct BTNode* rchild;
}BTNode,* BTree;#define true 1
#define false 0bool flag = true; //全局变量,初值为true. 若非二叉排序树,则置flag为false.
BTree pre = NULL; void initTree(BTree& T);
void CreateTree(BTree& T);
void JudgeBSTree(BTree T, bool& flag);int main()
{BTree T = NULL;initTree(T);CreateTree(T);JudgeBSTree(T, flag);if (flag == 1){printf("该二叉树为排序二叉树。\n");}else{printf("该二叉树为非排序二叉树。\n");}return 0;
}void initTree(BTree& T)
{T = NULL;
}//创建普通二叉树
void CreateTree(BTree& T)
{ElemType e = { 0,'\0' };printf("请输入结点的关键字域值(结点不存在时,输入0):");scanf_s(" %d", &e.Key);if (e.Key == 0){T = NULL;}else if (e.Key != 0){T = (BTree)malloc(sizeof(BTNode));T->data = e;CreateTree(T->lchild);CreateTree(T->rchild);}
}//中序遍历输入的二叉树,判断是否递增
void JudgeBSTree(BTree T, bool& flag)
{if (T && flag){JudgeBSTree(T->lchild, flag);//就是将原来中序遍历输出根结点的命令,替换为将该根结点值与其前一个值相比较if (pre == NULL){pre = T; //pre只有在中序遍历到第一个结点时为空,后面的结点都不为空。而第一个结点不必判断。}else if (pre->data.Key < T->data.Key) //每一个中序遍历的结点值T->data.Key都需要比前面一个结点值pre->data.Key大{pre = T;}else{flag = false;}JudgeBSTree(T->rchild, flag);}
}
//中序遍历输入的二叉树,判断是否递增
void JudgeBSTree(BTree T, bool &flag)
{if (T){printf("\n\n【a】T->data.Key = %d", T->data.Key);if (T->lchild){printf("\n【a】T->lchild->data.Key = %d", T->lchild->data.Key);}else{printf("\n【a】T->lchild->data.Key = #");}if (T->rchild){printf("\n【a】T->rchild->data.Key = %d", T->rchild->data.Key);}else{printf("\n【a】T->rchild->data.Key = #");}}else{printf("\n\n【a】T->data.Key = #");}if (T){printf("\n【1】开始 T = %d\n", T->data.Key);}else{printf("\n【1】开始 T = #\n");}if (T && flag){if (T->lchild){printf("\n【2】开始%d->lchild = %d \n", T->data.Key, T->lchild->data.Key);}else{printf("\n【2】开始%d->lchild = # \n ", T->data.Key);}JudgeBSTree(T->lchild,flag);if (T->lchild){printf("\n【3】%d->lchild = %d 结束\n", T->data.Key, T->lchild->data.Key);}else{printf("\n【3】%d->lchild = # 结束\n ", T->data.Key);}if (pre){printf("\n\n【b】pre->data.Key = %d \n", pre->data.Key);}else{printf("\n\n【b】pre->data.Key = # \n");}//就是将原来中序遍历输出根结点的命令,替换为将该根结点值与其前一个值相比较if (pre == NULL){pre = T; //pre只有在中序遍历到第一个结点时为空,后面的结点都不为空。而第一个结点不必判断。}else if(pre->data.Key < T->data.Key) //每一个中序遍历的结点值T->data.Key都需要比前面一个结点值pre->data.Key大{pre = T;}else {flag = false;}if (T->rchild){printf("\n【4】开始%d->rchild = %d \n", T->data.Key, T->rchild->data.Key);}else{printf("\n【4】开始%d->rchild = # \n ", T->data.Key);}JudgeBSTree(T->rchild, flag);if (T->rchild){printf("\n【5】%d->rchild = %d 结束\n", T->data.Key, T->rchild->data.Key);}else{printf("\n【5】%d->rchild = # 结束\n ", T->data.Key);}}if (T){printf("\n【6】T = %d 结束 \n", T->data.Key);}else{printf("\n【6】T = # 结束\n");}}
习题3
已知二叉排序树采用二叉链表存储结构,根结点的指针为 T, 链结点的结构为 (lchild,data, rchild) , 其中lchild、rchild分别指向该结点左、右孩子的指针,data域存放结点的数据信息。
请写出递归算法,从小到大输出二叉排序树中所有数据值 ≥ x 的结点的数据。要求先找到第一个满足条件的结点后,再依次输出其他满足条件的结点。
【在中序遍历时判断】
#include <stdio.h>
#include <stdlib.h>#define ENDFLAG -1 //自定义常量,作为输入结束标志typedef int KeyType;
typedef char InfoType;//二叉排序树的二叉链表存储表示
typedef struct
{KeyType Key;InfoType otherinfo;
}ElemType;typedef struct BSTNode
{ElemType data;struct BSTNode* lchild;struct BSTNode* rchild;
}BSTNode, * BSTree;void InitBiTree(BSTree& T);
void InsertBST(BSTree& T, ElemType e);
void CreateBST(BSTree& T);
void preOrderTraverse(BSTree T);
void InOrderTraverse(BSTree T);
void posOrderTraverse(BSTree T);
void Judge_x(BSTree T, int x);int main()
{BSTree T = NULL;InitBiTree(T);CreateBST(T);printf("\n二叉排序树链表的先序序列为: ");preOrderTraverse(T);printf("\n二叉排序树链表的中序序列为: ");InOrderTraverse(T);printf("\n二叉排序树链表的后序序列为: ");posOrderTraverse(T);printf("\n≥50的关键字为:");Judge_x(T, 50);return 0;
}//初始化二叉排序树
void InitBiTree(BSTree& T)
{T = NULL;
}//算法 7.5 二叉排序树的插入
//前提:当二叉排序树T中不存在关键字等于e.key的数据元素时, 则插入该元素
void InsertBST(BSTree& T, ElemType e)
{if (!T){BSTree S = (BSTree)malloc(sizeof(BSTNode));S->data = e;S->lchild = NULL;S->rchild = NULL;T = S; //把新结点*S链接到已找到的插入位置}else if (e.Key < T->data.Key){InsertBST(T->lchild, e);}else if (e.Key > T->data.Key){InsertBST(T->rchild, e);}else{printf("当二叉排序树T中存在关键字等于%d的结点,无法插入。\n", e.Key);return;}
}//算法7.6 二叉排序树的创建(在插入操作的基础上,且是从空的二叉排序树开始的)
//依次读人一个关键字为key的结点, 将此结点插人二叉排序树T中
void CreateBST(BSTree& T)
{InitBiTree(T);ElemType e = { 0,'\0' };printf("请输入新结点的关键字key值:");scanf_s(" %d", &e.Key);while (e.Key != ENDFLAG) //ENDFLAG为自定义常量-1,作为输入结束标志{InsertBST(T, e);e = { 0,'\0' };printf("请输入新结点的关键字key值:");scanf_s(" %d", &e.Key);}
}//先序递归遍历二叉排序树
void preOrderTraverse(BSTree T)
{if (T) //只有当T不为空时才访问它的成员{printf(" %d", T->data.Key);preOrderTraverse(T->lchild);preOrderTraverse(T->rchild);}
}//中序递归遍历二叉排序树
void InOrderTraverse(BSTree T)
{if (T){InOrderTraverse(T->lchild);printf(" %d", T->data.Key);InOrderTraverse(T->rchild);}
}//后序递归遍历二叉排序树
void posOrderTraverse(BSTree T)
{if (T){posOrderTraverse(T->lchild);posOrderTraverse(T->rchild);printf(" %d", T->data.Key);}
}//输出大于等于x的关键字
void Judge_x(BSTree T, int x)
{if (T){Judge_x(T->lchild, x);if (T->data.Key >= x){printf("%d ", T->data.Key);}Judge_x(T->rchild, x);}
}
习题4
已知二叉树T的结点形式为(llink,data, count, rlink), 在树中查找值为X的结点,若找到, 则记数(count)加1; 否则,作为一个新结点插入树中,插入后仍为二叉排序树,写出其非递归算法。
#include <stdio.h>
#include <stdlib.h>#define ENDFLAG -1 //自定义常量,作为输入结束标志typedef int KeyType;
typedef char InfoType;//二叉排序树的二叉链表存储表示
typedef struct
{KeyType Key;InfoType otherinfo;
}ElemType;typedef struct BSTNode
{ElemType data;int count;struct BSTNode* lchild;struct BSTNode* rchild;
}BSTNode, * BSTree;void InitBiTree(BSTree& T);
void InsertBST(BSTree& T, KeyType e);
void CreateBST(BSTree& T);
void preOrderTraverse(BSTree T);
void InOrderTraverse(BSTree T);
void posOrderTraverse(BSTree T);
void SearchBSTree(BSTree& T, KeyType e);int main()
{BSTree T = NULL;KeyType KEY = 0;char choice = '\0';InitBiTree(T);CreateBST(T);printf("\n二叉排序树链表的先序序列为: ");preOrderTraverse(T);printf("\n二叉排序树链表的中序序列为: ");InOrderTraverse(T);printf("\n二叉排序树链表的后序序列为: ");posOrderTraverse(T);while (1){printf("\n\n请输入要查找的关键字值:");scanf_s(" %d", &KEY);SearchBSTree(T, KEY);printf("\n二叉排序树链表的先序序列为: ");preOrderTraverse(T);printf("\n二叉排序树链表的中序序列为: ");InOrderTraverse(T);printf("\n二叉排序树链表的后序序列为: ");posOrderTraverse(T);printf("\n是否继续?(y/n)");scanf_s(" %c", &choice);if (choice != 'y' && choice != 'Y'){break;}}return 0;
}//初始化二叉排序树
void InitBiTree(BSTree& T)
{T = NULL;
}//二叉排序树的插入(非递归)
//二叉排序树T中不存在关键字等于key的数据元素时,插入该值.否则count++
void InsertBST(BSTree& T, KeyType e)
{BSTree f = NULL;BSTree q = T;BSTree S = (BSTree)malloc(sizeof(BSTNode));S->data.Key = e;S->count = 0; //每查找成功了次数才加1,新建时次数为0S->lchild = NULL;S->rchild = NULL;if (!T) //T为空树{T = S;return;}//因为T可能为空树,所以不能把这种情况放在最前面if (T->data.Key == e){T->count++;free(S);S = NULL;return;}while (q && q->data.Key != e){f = q;if (q->data.Key > e){q = q->lchild;}else //if(q->data.Key < e){q = q->rchild;}}if (q){ q->count++;free(S);S = NULL;}else{q = S;//只知f是q的父节点,但是不清楚q是f的哪个子树if (f->data.Key > e){f->lchild = S;}else{f->rchild = S;}}
}//算法7.6 二叉排序树的创建(在插入操作的基础上,且是从空的二叉排序树开始的)
//依次读人一个关键字为key的结点, 将此结点插人二叉排序树T中
void CreateBST(BSTree& T)
{InitBiTree(T);KeyType Key = 0;printf("请输入新结点的关键字key值:");scanf_s(" %d", &Key);while (Key != ENDFLAG) //ENDFLAG为自定义常量-1,作为输入结束标志{InsertBST(T, Key);printf("请输入新结点的关键字key值:");scanf_s(" %d", &Key);}
}//先序递归遍历二叉排序树
void preOrderTraverse(BSTree T)
{if (T) //只有当T不为空时才访问它的成员{printf("\n Key = %d, count = %d ", T->data.Key, T->count);preOrderTraverse(T->lchild);preOrderTraverse(T->rchild);}
}//中序递归遍历二叉排序树
void InOrderTraverse(BSTree T)
{if (T){InOrderTraverse(T->lchild);printf("\n Key = %d, count = %d ", T->data.Key, T->count);InOrderTraverse(T->rchild);}
}//后序递归遍历二叉排序树
void posOrderTraverse(BSTree T)
{if (T){posOrderTraverse(T->lchild);posOrderTraverse(T->rchild);printf("\n Key = %d, count = %d ", T->data.Key, T->count);}
}//创建后的查找与插入(非递归)
void SearchBSTree(BSTree& T, KeyType e)
{if (!T){printf("二叉排序树为空,查找失败。\n");return;}BSTree p = T;BSTree f = NULL;if (T->data.Key == e){printf("%d查找成功。\n", e);T->count++;return;}while (p && p->data.Key != e){f = p;if (p->data.Key > e){p = p->lchild;}else{p = p->rchild;}}if (p) //说明找到了p->data.Key = e{p->count++;printf("%d查找成功。\n", e);}else{BSTree S = (BSTree)malloc(sizeof(BSTNode));S->data.Key = e;S->count = 0;S->lchild = NULL;S->rchild = NULL;p = S;if (e > f->data.Key){f->rchild = S;}else{f->lchild = S;}printf("%d查找失败,已插入。\n", e);}
}
习题5
假设一棵平衡二叉树的每个结点都标明了平衡因子b, 试设计一个算法,求平衡二叉树的高度。
#include <stdio.h>
#include <stdlib.h>#define ENDFLAG -1 //自定义常量,作为输入结束标志typedef int KeyType;
typedef char InfoType;//二叉排序树的二叉链表存储表示
typedef struct
{KeyType Key;InfoType otherinfo;
}ElemType;typedef struct BSTNode
{ElemType data;int bf; //平衡因子(Balance Factor),struct BSTNode* lchild;struct BSTNode* rchild;
}BSTNode, * BSTree;void InitBiTree(BSTree& T);
void InsertBST(BSTree& T, KeyType e);
void CreateBST(BSTree& T);
void BF_BSTree(BSTree& T);
void preOrderTraverse(BSTree T);
void InOrderTraverse(BSTree T);
void posOrderTraverse(BSTree T);
int Height(BSTree T);
int Balance_Factor(BSTree T);
int Height_BF(BSTree T);int main()
{BSTree T = NULL;InitBiTree(T);CreateBST(T);BF_BSTree(T);printf("\n二叉排序树链表的先序序列为: ");preOrderTraverse(T);printf("\n二叉排序树链表的中序序列为: ");InOrderTraverse(T);printf("\n二叉排序树链表的后序序列为: ");posOrderTraverse(T);//假设已经平衡printf("\n\n该平衡二叉树的高度为:%d", Height_BF(T));return 0;
}//初始化二叉排序树
void InitBiTree(BSTree& T)
{T = NULL;
}//算法 7.5 二叉排序树的插入
//前提:当二叉排序树T中不存在关键字等于e.key的数据元素时, 则插入该元素
void InsertBST(BSTree& T, KeyType e)
{if (!T){BSTree S = (BSTree)malloc(sizeof(BSTNode));S->data.Key = e;S->bf = 0;S->lchild = NULL;S->rchild = NULL;T = S; //把新结点*S链接到已找到的插入位置}else if (e < T->data.Key){InsertBST(T->lchild, e);}else if (e > T->data.Key){InsertBST(T->rchild, e);}else{printf("当二叉排序树T中存在关键字等于%d的结点,无法插入。\n", e);return;}
}//算法7.6 二叉排序树的创建(在插入操作的基础上,且是从空的二叉排序树开始的)
//依次读人一个关键字为key的结点, 将此结点插人二叉排序树T中
void CreateBST(BSTree& T)
{InitBiTree(T);KeyType Key = 0;printf("请输入新结点的关键字key值:");scanf_s(" %d", &Key);while (Key != ENDFLAG) //ENDFLAG为自定义常量-1,作为输入结束标志{InsertBST(T, Key);printf("请输入新结点的关键字key值:");scanf_s(" %d", &Key);}
}//全部创建完成后,根据中序遍历,求每个结点的平衡因子
void BF_BSTree(BSTree &T)
{if (T){BF_BSTree(T->lchild);T->bf = Balance_Factor(T);BF_BSTree(T->rchild);}
}//先序递归遍历二叉排序树
void preOrderTraverse(BSTree T)
{if (T) //只有当T不为空时才访问它的成员{printf("\nKey = %d, bf = %d ", T->data.Key,T->bf);preOrderTraverse(T->lchild);preOrderTraverse(T->rchild);}
}//中序递归遍历二叉排序树
void InOrderTraverse(BSTree T)
{if (T){InOrderTraverse(T->lchild);printf("\nKey = %d, bf = %d ", T->data.Key, T->bf);InOrderTraverse(T->rchild);}
}//后序递归遍历二叉排序树
void posOrderTraverse(BSTree T)
{if (T){posOrderTraverse(T->lchild);posOrderTraverse(T->rchild);printf("\nKey = %d, bf = %d ", T->data.Key, T->bf);}
}//求高度
int Height(BSTree T)
{if (!T){return 0;}else{int m = Height(T->lchild);int n = Height(T->rchild);if (m > n){return m + 1;}else{return n + 1;}}
}//根据高度求平衡因子
int Balance_Factor(BSTree T)
{int left = Height(T->lchild);int right = Height(T->rchild);return left - right;
}//根据平衡二叉排序树的平衡因子求高度
//平衡二叉树,每个结点的平衡因子绝对值不超过1
int Height_BF(BSTree T)
{int level = 0;BSTree p = T;while (p){level++;if (p->bf < 0) //p->bf == -1{p = p->rchild;}else //if(p->bf == 1 || p->bf == 0){p = p->lchild;}}return level;
}
习题6
分别写出在散列表中插入和删除关键字为K的一个记录的算法,设散列函数为H, 解决冲突的方法为链地址法。
//除留余数法构造散列函数,“链地址法”处理冲突#include <stdio.h>
#include <stdlib.h>
#include <math.h>#define m 13
#define NULLKEY 0typedef int KeyType;
typedef char InfoType;typedef struct KeyNode
{KeyType Key;InfoType OtherInfo;struct KeyNode* next;
}KeyNode;void CreateHash(KeyNode HT[]);
void Insert(KeyNode HT[], KeyType key);
int SearchHash(KeyNode HT[], KeyType key);
int H(KeyType key);
int maxPrimeNumber(int n);
int checkPrimeNumber(int n);
void Delete(KeyNode HT[], KeyType key);
void printHashTable(KeyNode HT[]);int main()
{KeyNode HT[m] = { 0 };KeyType k1 = 0;KeyType k2 = 0;char choice = '\0';CreateHash(HT);printHashTable(HT);while (1){printf("\n\n请输入要插入的数值:");scanf_s(" %d", &k1);Insert(HT, k1);printHashTable(HT);printf("\n\n请输入要删除的数值:");scanf_s(" %d", &k2);Delete(HT, k2);printHashTable(HT);printf("\n\n是否继续?(y/Y)");scanf_s(" %c", &choice);if (choice != 'y' && choice != 'Y'){break;}}return 0;
}//创建散列表
void CreateHash(KeyNode HT[])
{int i = 0;int KEY = 0;int flag = 0;for (i = 0; i < m; i++){HT[i].Key = NULLKEY;HT[i].next = NULL;}for (i = 1; i <= m; i++){printf("请输入第%d个关键字(结束时输入-1):", i);scanf_s(" %d", &KEY); //记录个数可以小于表长度if (KEY != -1){flag = SearchHash(HT, KEY);if (flag == -1){Insert(HT, KEY);}else{printf("该元素已存在,无法插入,请重新输入。\n");i--;}}else{break;}}if (i > m){printf("散列表已满。");return;}
}//散列表的查找
int SearchHash(KeyNode HT[], KeyType key)
{int H0 = H(key);KeyNode* p = HT[H0].next;while (p != NULL){if (p->Key == key){return H0; //找见了}p = p->next;}return -1; //没找见
}//散列表的插入(链地址法处理冲突)
void Insert(KeyNode HT[], KeyType key)
{int H0 = H(key);KeyNode* p = HT[H0].next;while (p != NULL){if (p->Key == key){printf("该元素已存在,无法插入。\n");}p = p->next;}KeyNode* r = (KeyNode*)malloc(sizeof(KeyNode));r->Key = key;r->next = HT[H0].next;HT[H0].next = r;
}//散列函数
/* 采用除留余数法构造散列函数,选择p为小于表长m的最大质数 */
int H(KeyType key)
{int p = maxPrimeNumber(m);return key % p;
}//确定[0,n]范围内的最大质数
int maxPrimeNumber(int n)
{int i = 0;int status = checkPrimeNumber(0);int max = 0;for (i = 0; i <= n; i++){status = checkPrimeNumber(i);if (status){max = i;}}return max;
}//判断一个数是否是质数
int checkPrimeNumber(int n)
{int i = 0;int sq = floor(sqrt(n));if (n <= 1){return 0;}if (n == 2 || n == 3){return 1;}//只有6x-1和6x+1的数才有可能是质数(但不一定就是,如n=35,还需要继续判断)if (n % 6 != 1 && n % 6 != 5) //n=4和n=6时,n%6满足该if条件,返回false,正好符合情况{return false;}/* 如果 i 是简单类型(int ,char),在使用层面,i+=6 与 i=i+6 做的事是一样的,都是将 i 的值加了6,但生成的可执行代码不一样,且i+=6 与 i=i+6 运行的效率不同,i+=6 肯定更快。 *///只判断 该与6的倍数相邻的数n 能否被 其它不超过sq 且 也与6的倍数相邻的数i和i+2 整除// 同样因为“只有与6的倍数相邻的数才可能是质数”,所以用i和i+2来判断(i=5\11\17\23\29\35... i+2=7\13\19\25\31\37...)。// 定理:如果一个数n不能整除 比它小的任何素数(比n小的全部素数一定都包含在i和i+2中),那么这个数n就是素数。for (i = 5; i <= sq; i+= 6){if (n % i == 0 || n % (i + 2) == 0) {return 0;}}//此处for循环中,仍然找的是整数n的因数,所以仍然可以使用定理:如果一个数m不是质数,那么它必定有一个因子≤√m,另一个≥√m。所以i仍然判断到sq就可以。//真命题“如果数n存在一个大于√n的整数因数,那么它必定存在一个小于√n的整数因数。”的逆否命题也是真命题。// 即如果一个数n没有小于√n的整数因数,那么它也一定不会有大于√n的整数因数(除了它自己)。//n = 5 和 n=7 时,不会进入if判断语句,也不会进入for循环,而是直接返回true,此时也判断正确return true;
}void printHashTable(KeyNode HT[])
{int i = 0;KeyNode* p = NULL;printf("\n散列表中的元素为:");for (i = 0; i < m; i++){if (HT[i].next != NULL){printf("\n在%d个位置处,保存的关键字有:", i+1);for (p = HT[i].next; p; p = p->next){printf("%d ", p->Key);}}//空槽(链表不为空的)不输出,但是其它的元素还是要输出//链地址法中,散列表每个位置的HT[i].key成员并不存储任何数据,通常设置为 NULLKEY或者不使用}
}//散列表的删除
void Delete(KeyNode HT[],KeyType key)
{int H0 = H(key);KeyNode* p = HT[H0].next;KeyNode* q = NULL;while (p != NULL){if (p->Key == key){break;}q = p;p = p->next;}if (!q){HT[H0].next = p->next;}else{q->next = p->next;}if (!p){printf("%d查找失败,无法删除。\n", key);}free(p);p = NULL;}
这篇关于《数据结构(C语言版)第二版》第七章-查找(算法设计题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!