【加密社】比特币海量数据问题解决方案

2024-09-05 11:28

本文主要是介绍【加密社】比特币海量数据问题解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

加密社

比特币是无敌的存在,刚翻了一遍中本聪的论文(其实以前看过一次,那时不明觉厉),发现咱们一直在考虑的问题,基本都能在其论文上找到解决方案了。。

现在出现的这些问题,完全是因为bitcoin-qt、bitcoind的实现有问题,根据其设计思想,完全是可以解决的。 (比如可以二次开发一些轻量级的神器来辅助的。)

现阶段,主要发现的问题有:

1. 庞大的数据库问题。

2. 未来单位时间内,(上亿笔的)海量交易的可能性。(block 1MB大小限制与数据风暴的问题)

3. 支付确认长达10分钟的问题。

论文、白皮书 (中文):http://www.btc123.com/data/docs/bitcoin_cn.pdf

原英文论文、白皮书:http://bitcoin.org/bitcoin.pdf

首先说明第一个问题,逐渐庞大的数据库问题。

论文中第7点,明确提出了,可以通过删除所有交易数据(当然,最好要保留自己的数据),只保留blockheader,就够实际使用了。

每个blockheader由80字节组成,无论一年内多少惊人的交易数据,其blockheader大概只需要4.2MB左右即可。哪怕这一年,发生了几百万亿的交易!!

左图,为完整的交易清单内容,右图,为压缩后的数据内容。

对于银行、储蓄等要求比较高的节点,可以保存完整数据,而对于要求不高的节点,则可以使用压缩数据。

其中,二叉树中,n层的tree中,可以存放(2^n)-1的数据,换句话,反向计算,本机只需要储存32个hash,即可代表42亿笔交易数据。完爆visa和master。 而且,不一定要使用二叉树,N叉树的话。。。

其中,对于已被删除数据的节点,论文第8点提出,通过反向索引tree,即右图的树节点(hash0-3),生成root hash对比,即可确认交易正确。

(下图是我的个人理解)

(中文白皮书翻译的那位,请改下段落8第一段的最后一句,你理解错了,我阅读了英文原版才理解出他的处理方案)

缺点1:有存在hash攻击从而欺骗可能,但个人认为其sha256碰撞的计算难度挺大的,并且仅适用于轻量客户端,对于完整清单的数据节点是无效的。(在论文中也提到过一个警告的解决方案,我理解得不是很透彻。)

缺点2:需要接收、处理所有的交易请求,检测是否是自身需要的。

不知是否中本聪的失误或笔误,我个人认为这是一种比较蹩脚的做法。因为如果是轻量客户端的话,根本就不该接收0确认的交易数据,尤其是在未来,短时间内上百万交易数据的情况下。

尤其是现在的bitcoin,支持bloom filter,可以直接进行收款地址级的数据筛选,过滤掉不属于自身的数据。减少数据风暴的可能性。

但不管是中本聪的方案,还是现在bitcoin的bloom filter方案,都可以解决数据暴涨的问题。让非专业用户、甚至手机用户使用。

同时,对于1MB的大小限制问题也顺便解决一半了,另一半问题,便是数据风暴与blocksize的协调问题。

其实也不该担忧,对于理想轻量级的客户端,他是主动查询最新blockchain,并且网络传输也是被filter缩减掉的,并且不需要发送大量数据,所以没有数据风暴的问题存在的。

而剩下的数据风暴,仅存在完整节点上,对此没什么彻底解决的办法。

由于对于海量的数据,是难以十分钟内即时地传播给全部的节点。比如一千万条交易请求了,一分钟内要接受900MB的网络数据,尤其对于个人的p2p挖矿人来说,是个比较麻烦的问题。

但是,还是有个代替措施(个人想法)。首先,先列举出,完整节点都有谁,矿池,p2pool 节点,类银行或第三方数据库。

解决措施,是利用merkle tree。交易请求发送给矿池(也可以是矿工),组成个tree树。

需要注意的是,这些节点,底层是轻量级pool节点,而上层,是完整级节点。

这个其实就是中本聪之前提出的方案,不过这里,并不是用于轻量级客户端,而是用于矿池和支付网关,用于网络结构优化。

(可将现在的web pool由纯粹的miner pool,变成miner pool与service node结合起来的节点,并且是半轻量级的节点。)

注:比特币完整节点包括三个功能,miner, receive tx(Timestamp Server), query tx,其中,miner与receive可以不需要保存或传出交易内容,只需要hash即可,而query则需要完整数据库、完整的交易内容。

可以从图中看到,每LightWeight pool只需要处理自己旗下的交易记录,不需要管其他pool的交易记录。而且merkle tree的高度不只为三,那么所谓的数据风暴问题轻而易举的就可以解决了,每个轻量级pool上,只需要每隔单位时间就更新下其他节点的merkle hash,就可以变相"同步"到其他pool上的海量交易数据了。

只有Full Pool/Node才需要接受数据风暴的洗礼,这就让有实力的人承担吧。

同时,lightweight pool 在收到交易请求时,向full pool 请求filter一下,是否有相同的未确认交易,防止多重支付。中本聪的论文中提出,需要确保在交易期间绝大多数的节点都认同该交易是首次出现.

另外个人建议,可以根据地域来选择 lightweight pool 支付网关 , 这样,通过地域性的加速,可以便捷的让你的交易请求进入全网。

缺点1:如果某个pool节点关闭了,可能因为时间差导致,旗下的部分未被确认交易数据未广播出来。不过这不是问题,现在的bitcoin本身就存在有时发出交易后,其他节点上看不到0确认的交易问题存在。

缺点2:pool节点本身,是第三方的,有可能不是加入pool's p2p pool,而是加入受监督的service node;或是直接联合恶意miner pool进行51%攻击。

当然,如果你对自己的网络能力有信心的话,也可以直接加入miner p2p pool,接受数据风暴的摧残。(如现在的p2pool.info所设计的程序体系)

缺点3:由于miner组成的完整节点逐渐变少,导致用户可以查询的完整数据节点也变少了。这点其实应该在之前就存在了,跟miner/pool无关,大家都用轻量级客户端了,完整客户端自然就变少了。

最后,关于确认时间的问题,其实如果深入理解就知道了,0确认本身并不危险。

首先,先了解下,比特币只要你签名了这次转账,如果生成的数据本身是合法能过检查的,那么,无论是谁来发送的这笔交易数据,它都是可以被全网确认的。(离线交易的原理)

其次,论文中提出,Timestamp Server / 完整节点 需要限定,需要确保在交易期间绝大多数的节点都认同该交易是首次出现。换句话说,在诚信节点上,每笔钱,在0交易时,这笔钱的来源,最多出现1次,当节点收到的第二次交易请求,因为是多重支付,哪怕之前的交易尚未被确认,也将会把新交易请求拒绝掉。

即论文中所提到的,实际上我们需要关注的只是于本交易之前发生的交易,而不需要关注这笔交易发生之后是否会有双重支付的尝试.

也就是说,若你在blockchain.info上,看到0确认交易的时候,你就可以知道,在blockchain.info网站所认定的分支里,没有双重交易的了。
若有,也仅仅是在其他算力分支里,但需要欺骗人能攻击掉网络才有可能。

并且,而所谓的0确认,实质上已经隐含的代表,交易已确认1次了,只不过,是部分网络节点的1确认而已。

简单的描述:
大于等于1的交易确认,是经过51%的全网算力半永久的保护了;
而若查询N个节点出现0确认,就可以认定,交易是至少被N个在线节点保护了,并且是效验通过的了。
而至于无效、错误交易,根本就不会进入0确认队列,因为在接收的时候就已经拒绝掉了。(除非是伪装节点)

两者无论攻击谁,都是有一定难度的。前者不必多说,后者需要攻击者占有全网51%算力的在线挖矿节点或矿池,这与51%算力攻击难度,可以说是近似于等价的(网络数据包劫持手法除外)。

个人认为,你只查询六七个网站(节点),是否都出现0确认了,其安全性几乎就是难以出现多重支付了!

若需要更加稳妥点,等新版客户端要增加的tx请求反馈指令出来了,只需要对全网的排名前几名的矿池,进行inv.MSG_TX查询,只需要总算力超过51%的几个矿池接受了你的0确认交易,就是可信的了。哪怕攻击者占有了全网51%的在线节点,也是毫无用处的。

即,比特币交易,几秒确认是可行的。

这篇关于【加密社】比特币海量数据问题解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138832

相关文章

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S