使用多线程解决读写数据不一致的问题

2024-09-05 11:04

本文主要是介绍使用多线程解决读写数据不一致的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在工作中我们经常会遇到从一个文件中读取数据,然后去做另一个操作,最近小编在日常工作中遇到一个问题:从一个json文件中读取参数化数据循环对比配置,发现生成的配置都是取得最后一个参数所生成的,在这里小编就很疑惑了,查看日志,入参都是没有问题的,是什么原因引起的呢?小编排查日志很久都没发现啥问题,于是我用单个参数进行更新发现每个参数都是OK的,不会存在更新失败的问题,所以参数是没有问题的,那么是哪里的问题呢。

然后我注意到执行循环对比时,多个配置进行对比程序运行完时间竟然还比单个文件运行时间短,这明显不合理啊,于是我突发奇想:是不是程序没执行完就往下循环了,因为小编刚开始是用的单线程。

初始代码

问题代码如下

# 省略库导入,代码仅供参考current_dir = os.getcwd()
config_dir = os.path.join(current_dir, 'configs')
app_file = os.path.join(config_dir, "app.json")
app_list = []
diff_result = Nonedef test_batch_diff():logging.info(f"{config_dir},{app_file}")with open(app_file, "r") as f:app_list = json.load(f)logging.info(f"{json.dumps(app_list, indent=2)}")for app_value in app_list:logging.info(f'app_value:{app_value}')app = app_value.get("app")a = app_value.get("a")e = app_value.get("e")version = app_value.get("version")app_dict = dict(app=app, a=a, e=e, version=version)logging.info(f'app_dict:{app_dict}')if app and a and e and version:# update_config_psa_data(**app_dict)diff_result = single_configs_compare_v2(app_dict)if diff_result:write_diff_results(app, diff_result)# 示例调用
if __name__ == "__main__":test_batch_diff()

为啥这个写入的diff_result都是psa_list最后的一个数据?小编查阅了下资料确认是:

可能出在single_configs_compare_v2(psa_dict)函数耗时较长,导致在该函数执行期间程序进入下一次循环,从而导致每次写入的diff_result都是最后一个数据。

执行时间较长,然后没完全执行完就开始下个循环了,导致参数化结果都是一样的,这显然是不可接受的。在这里可以将耗时较长的任务放在另外一个线程中进行处理,经测试,将耗时长的这个函数single_configs_compare_v2放到另外一个线程中执行问题就解决了。

使用多线程优化后的代码


# 省略库导入,代码仅供参考
current_dir = os.getcwd()
config_dir = os.path.join(current_dir, 'configs')
app_file = os.path.join(config_dir, "app.json")
app_list = []
diff_result = Nonedef process_app(app_dict):diff_result = single_configs_compare_v2(app_dict)if diff_result:write_diff_results(app_dict["app"], diff_result)def test_batch_diff():logging.info(f"{config_dir},{app_file}")with open(app_file, "r") as f:app_list = json.load(f)logging.info(f"{json.dumps(app_list, indent=2)}")threads = []for app_value in app_list:logging.info(f'app_value:{app_value}')app = app_value.get("app")a = app_value.get("a")e = app_value.get("e")version = app_value.get("version")app_dict = dict(app=app, a=a, e=e, version=version)logging.info(f'app_dict:{app_dict}')if app and a and e and version:thread = threading.Thread(target=process_app, args=(app_dict,))threads.append(thread)thread.start()# 确保所有线程都执行完毕for thread in threads:thread.join()# 示例调用
if __name__ == "__main__":test_batch_diff()

在这个修改后的代码中,我们将single_configs_compare_v2(app_dict)的执行放在了一个单独的线程中,这样可以避免阻塞主循环。通过使用多线程,可以让每次对比操作在独立的线程中进行,从而避免因为耗时操作导致的数据混乱问题。

总结

多线程是一种常见的并发编程模型,在许多应用场景中具有显著的优势。下面详细介绍多线程的使用场景及其优势。

多线程的使用场景

  1. I/O 密集型任务

    • 当程序需要频繁进行 I/O 操作(如磁盘读写、网络通信等),并且这些操作耗时较长时,使用多线程可以让其他线程继续执行,提高程序的整体响应速度和效率。
  2. CPU 密集型任务

    • 对于需要大量计算的任务,多线程可以充分利用多核处理器的并行计算能力,加快计算速度。但是需要注意的是,多线程在 CPU 密集型任务上的优势取决于具体的应用场景和硬件配置。
  3. 用户界面交互

    • 在图形用户界面(GUI)应用程序中,主线程通常负责处理用户交互事件,而其他线程则可以用来执行耗时的后台任务,避免用户界面冻结。
  4. 网络服务

    • 在服务器端开发中,多线程可以用来处理并发的客户端请求,每个客户端连接由一个独立的线程处理,提高服务器的响应能力和吞吐量。
  5. 批处理任务

    • 对于需要处理大量数据或任务的情况,可以将任务分解成多个子任务,并在多个线程中并行处理,以提高整体处理速度。

多线程的优势

  1. 提高响应速度

    • 多线程可以提高程序的响应速度,尤其是在处理 I/O 密集型任务时,可以让程序在等待 I/O 操作完成的同时继续执行其他任务。
  2. 提高资源利用率

    • 多线程可以更好地利用计算机系统的资源,尤其是多核处理器。每个线程都可以在不同的核心上并行执行,从而提高整体性能。
  3. 改善用户体验

    • 在 GUI 应用程序中,多线程可以避免由于长时间运行的任务导致的界面冻结,提供更好的用户体验。
  4. 简化复杂任务的处理

    • 对于复杂的任务,可以将其拆分成多个子任务,并在多个线程中并行执行,简化任务处理的难度。
  5. 提高系统吞吐量

    • 在服务器端应用中,多线程可以处理更多的并发请求,提高系统的吞吐量。

多线程的注意事项

尽管多线程有很多优势,但也存在一些需要注意的问题:

  1. 线程安全

    • 多线程环境下,多个线程可能会同时访问共享资源,因此需要确保对共享资源的访问是线程安全的,通常通过使用锁(如 threading.Lock)来实现。
  2. 死锁

    • 如果多个线程持有不同的锁,并且都在等待对方释放自己所需的锁,就会发生死锁。需要合理设计线程间的锁获取顺序来避免死锁。
  3. 资源开销

    • 创建和销毁线程会有一定的资源开销,因此在频繁创建和销毁线程时需要注意性能问题。
  4. 调试难度

    • 多线程程序的调试通常比单线程程序更加复杂,因为线程之间的执行顺序往往是不确定的,可能会引入难以复现的 bug。

总之,多线程是一种强大的工具,可以显著提高程序的性能和响应速度,但在使用时需要谨慎处理线程间的数据共享和同步问题。在适当的应用场景下,合理利用多线程可以带来极大的性能提升。

这篇关于使用多线程解决读写数据不一致的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138780

相关文章

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

springboot的调度服务与异步服务使用详解

《springboot的调度服务与异步服务使用详解》本文主要介绍了Java的ScheduledExecutorService接口和SpringBoot中如何使用调度线程池,包括核心参数、创建方式、自定... 目录1.调度服务1.1.JDK之ScheduledExecutorService1.2.spring

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

Nginx启动失败:端口80被占用问题的解决方案

《Nginx启动失败:端口80被占用问题的解决方案》在Linux服务器上部署Nginx时,可能会遇到Nginx启动失败的情况,尤其是错误提示bind()to0.0.0.0:80failed,这种问题通... 目录引言问题描述问题分析解决方案1. 检查占用端口 80 的进程使用 netstat 命令使用 ss

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定