日志系统前置知识

2024-09-05 10:52
文章标签 系统 日志 知识 前置

本文主要是介绍日志系统前置知识,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

日志:程序运行过程中所记录的程序运行状态信息。通过这些信息,以便于程序员能够随时根据状态信息,对系统的运行状态进行分析。功能:能够让用户非常简便的进行日志的输出以及控制。

同步写日志

同步日志是指当输出日志时,必须等待日志输出语句执行完毕后,才能执行后面的业务逻辑语句,日志输出语句与程序的业务逻辑语句将在同⼀个线程运行。每次调用⼀次打印日志API就对应⼀次系统调用write写日志文件。

在高并发场景下,随着日志数量不断增加,同步日志系统容易产生系统瓶颈: 一方面,大量的日志打印陷入等量的write系统调用,有⼀定系统开销。 另一方面,使得打印日志的进程附带了大量同步的磁盘IO,影响程序性能。

异步写日志  

异步日志是指在进行日志输出时,日志输出语句与业务逻辑语句并不是在同⼀个线程中运行,而是有专门的线程用于进行日志输出操作。业务线程只需要将日志放到⼀个内存缓冲区中不用等待即可继续执行后续业务逻辑(作为日志的生产者),而日志的落地操作交给单独的日志线程去完成(作为日志的消费者), 这是⼀个典型的生产-消费模型。

这样做的好处是即使日志没有真的地完成输出也不会影响程序的主业务,可以提高程序的性能: 主线程调用日志打印接口成为非阻塞操作,同步的磁盘IO从主线程中剥离出来交给单独的线程完成。

不定参宏函数

#include <stdio.h>
#define LOG(fmt,...) printf("[%s:%d]" fmt,__FILE__,__LINE__,##__VA_ARGS__);//fmt是格式化字符串,包含许多格式化字符,要从后面取出各种各样不同的参数来组织字符串, 而...标识是不定参,而宏__VA_ARGS__是使用不定参。##是告诉我们当不定参是空的时候则取消前面的逗号
int main()
{printf("[%s:%d]""%s",__FILE__,__LINE__,"hello wjj\n");//__FILE__,__LINE__两个宏说明是所在文件和行号。LOG("%s%d\n","wjj",666);LOG("hello wjj\n");//此时不定参是空,所以##起了作用。return 0;
}

 


#include <iostream>
#include <cstdarg>
void printNum(int n, ...) //打印数字,我们首先得确定有多少个数字,n代表传入数字的个数,而传的数字是不确定的。
{va_list al;va_start(al, n);//获取地址参数的起始地址,这里就是获取参数n之后的第一个不定参数的起始地址for (int i = 0; i < n; i++) {int num = va_arg(al, int);//从不定参数中获取出⼀个整形参数,这也是va_arg函数第二个参数的意思。std::cout << num << std::endl;}va_end(al);//清空可变参数列表--其实是将al指针置空
}
int main()
{printNum(3,1,2,3);return 0;
}
//printf前面格式化的字符串里面格式化的字符%d、%s告诉我们编译器接下来应该从后面取几个字节的数据当做整型数据还是字符串来进行处理。

//模拟实现一下printf的实现
#include <iostream>
#include <cstdarg>
void myprintf(const char *fmt, ...) 
{char *res;va_list al;va_start(al, fmt);//fmt有什么格式化的字符,决定我们从后面取出什么类型的数据int len = vasprintf(&res, fmt, al);//int vasprintf(char **strp, const char *fmt, va_list ap);借用res会自己申请空间,根据fmt格式化字符,从格式化参数列表al里面取出一个一个的参数进行数据组织,并放入申请的空间里面去。 va_end(al);std::cout << res << std::endl;free(res);//要释放
}
int main()
{myprintf("%s-%d", "wjj", 25);myprintf("hello wjj");return 0;
}

#include <iostream>
#include <cstdarg>
#include <memory>
#include <functional>
void xprintf() //对函数模板进行特化,增加一个无参的形式。
{std::cout << std::endl;
}
template<typename T, typename ...Args>//后者定义的是一个不定参参数包类型
void xprintf(const T &value, Args &&...args) 
{std::cout << value << " ";//先打印第一个参数if ((sizeof ...(args)) > 0) //获得参数包的个数{xprintf(std::forward<Args>(args)...);//采用一种递归的思想,完美转发,你传递过来的时候是左值,现在就还是左值。 并且还要补充一个无参的形式}else {xprintf();}
}
int main()
{xprintf("wjj");xprintf("wjj", 666);xprintf("hello", "wjj", 666);return 0;
}

  

设计模式

单例模式

⼀个类只能创建⼀个对象,即单例模式,该设计模式可以保证系统中该类只有⼀个实例,并提供⼀个访问它的全局访问点,该实例被所有程序模块共享。

//饿汉模式,用空间换时间的思想
class Singleton 
{
private:static Singleton _eton;//使用static来修饰。这里属于成员声明,并非定义,类内的静态成员需要在类外进行定义。
private:Singleton():_data(99){std::cout<<"单例对象构造\n";}//构造函数私有化,保证类外无法实例化对象,只能在类内实例化,~Singleton(){}int _data;
public:Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;static Singleton& getInstance() //提供一个访问接口{return _eton;}int GetData(){return _data;}
};
Singleton Singleton::_eton;//类内的静态成员需要在类外定义。静态对象的资源是在静态区的,它的生命周期随整个程序的,它的初始化构造是在我们程序初始化阶段就完成的。不管你用不用,这个对象的资源都已经分配了。int main()
{std::cout<<Singleton::getInstance().GetData()<<std::endl;//就算没有这行代码,这个单例对象也会构造return 0;
}

//懒汉模式,延迟加载的思想,也就是一个对象到用的时候在进行实例化,而不是程序一起来不管用与否都进行实例化
//实现方法:定义对象的时候是定义一个对象的指针,在通过访问接口的时候发现其为空再去new一个对象
class Singleton { 
private:Singleton():_data(99){std::cout<<"单例对象构造\n";}//构造函数私有化,保证类外无法实例化对象~Singleton(){}int _data;
public: Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;static Singleton& getInstance() { static Singleton _eton;//确保C++11起,静态变量将能够在满⾜thread-sa fe的前提下唯⼀地被构造和析构,这里静态局部对象的定义是线程安全的,多个线程试图同时初始化同一个静态局部变量时,初始化只会发生一次。return _eton; } int GetData(){return _data;}
}; int main()
{std::cout<<Singleton::getInstance().GetData()<<std::endl;//没有这行代码,这个单例对象不会构造return 0;
}

工厂模式

工厂模式是⼀种创建型设计模式, 它提供了⼀种创建对象的最佳⽅式。在工厂模式中,我们创建对象 时不会对上层暴露创建逻辑,而是通过使用⼀个共同结构来指向新创建的对象,以此实现创建-使用的分离。

//简单⼯⼚模式:通过参数控制可以⽣产任何产品
// 优点:简单粗暴,直观易懂。使⽤⼀个⼯⼚⽣产同⼀等级结构下的任意产品
// 缺点:
// 1. 所有东西⽣产在⼀起,产品太多会导致代码量庞⼤
// 2. 开闭原则遵循(开放拓展,关闭修改)的不是太好,要新增产品就必须修改⼯⼚⽅法。
class Fruit 
{
public:Fruit(){}virtual void show() = 0;
};
class Apple : public Fruit 
{
public:Apple() {}virtual void show() {std::cout << "我是⼀个苹果" << std::endl;}
};
class Banana : public Fruit 
{
public:Banana() {}virtual void show() {std::cout << "我是⼀个⾹蕉" << std::endl;}
};class FruitFactory 
{
public:static std::shared_ptr<Fruit> create(const std::string &name) {if (name == "苹果") {return std::make_shared<Apple>();}else if(name == "⾹蕉") {return std::make_shared<Banana>();}return std::shared_ptr<Fruit>();}
};
int main()
{std::shared_ptr<Fruit> fruit = FruitFactory::create("苹果");fruit->show();fruit = FruitFactory::create("⾹蕉");fruit->show();return 0;
}


 

//工厂方法模式:在简单⼯⼚模式下新增多个⼯⼚,多个产品,每个产品对应⼀个⼯⼚。
#include <iostream>
#include <memory>
#include<string>
class Fruit
{
public:Fruit() {}virtual void show() = 0;
};
class Apple : public Fruit
{
public:Apple() {}virtual void show(){std::cout << "我是⼀个苹果" << std::endl;}private:std::string _color;
};
class Banana : public Fruit
{
public:Banana() {}virtual void show(){std::cout << "我是⼀个⾹蕉" << std::endl;}
};
class FruitFactory
{
public:virtual std::shared_ptr<Fruit> create() = 0;
};
class AppleFactory : public FruitFactory
{
public:virtual std::shared_ptr<Fruit> create(){return std::make_shared<Apple>();}
};class BananaFactory : public FruitFactory
{
public:virtual std::shared_ptr<Fruit> create(){return std::make_shared<Banana>();}
};int main()
{std::shared_ptr<FruitFactory> ff(new AppleFactory()); std::shared_ptr<Fruit> fruit_apple = ff->create();fruit_apple->show();ff.reset(new BananaFactory());//更改fruit_apple管理的对象std::shared_ptr<Fruit> fruit_banana = ff->create();fruit_banana->show();return 0;
}

//抽象工厂:围绕一个超级工厂创建其他工厂。每个生成的工厂按照工厂模式提供对象。
//思想:将工厂抽象成两层,抽象工厂 & 具体简单工厂子类, 在工厂子类种生产不同类型的子产品
#include<iostream>
#include<memory>
class Fruit {public:Fruit(){}virtual void show() = 0;
};
class Apple : public Fruit {public:Apple() {}virtual void show() {std::cout << "我是一个苹果" << std::endl;}private:std::string _color;
};
class Banana : public Fruit {public:Banana() {}virtual void show() {std::cout << "我是一个香蕉" << std::endl;}
};
class Animal {public:virtual void voice() = 0;
};
class Lamp: public Animal {public:void voice() { std::cout << "咩咩咩\n"; }
};
class Dog: public Animal {public:void voice() { std::cout << "汪汪汪\n"; }
};class Factory //通过这个抽象工厂类派生出水果工厂和动物工厂
{public:virtual std::shared_ptr<Fruit> getFruit(const std::string &name) = 0;virtual std::shared_ptr<Animal> getAnimal(const std::string &name) = 0;
};class FruitFactory : public Factory {public:virtual std::shared_ptr<Animal> getAnimal(const std::string &name) {return std::shared_ptr<Animal>();//生产水果就采用返回一个空的智能指针就可以了}virtual std::shared_ptr<Fruit> getFruit(const std::string &name) {if (name == "苹果") {return std::make_shared<Apple>();}else if(name == "香蕉") {return std::make_shared<Banana>();}return std::shared_ptr<Fruit>();}
};class AnimalFactory : public Factory {protected:public:virtual std::shared_ptr<Fruit> getFruit(const std::string &name) {return std::shared_ptr<Fruit>();}virtual std::shared_ptr<Animal> getAnimal(const std::string &name) {if (name == "小羊") {return std::make_shared<Lamp>();}else if(name == "小狗") {return std::make_shared<Dog>();}return std::shared_ptr<Animal>();}
};class FactoryProducer {public:static std::shared_ptr<Factory> getFactory(const std::string &name) {if (name == "动物") {return std::make_shared<AnimalFactory>();}else {return std::make_shared<FruitFactory>();}}
};int main()
{std::shared_ptr<Factory> fruit_factory = FactoryProducer::getFactory("水果");//先生产水果工厂std::shared_ptr<Fruit> fruit_apple=fruit_factory->getFruit("苹果");fruit_apple->show();std::shared_ptr<Factory> animal_factory = FactoryProducer::getFactory("动物");//先生动物果工厂std::shared_ptr<Animal> animal_dog=animal_factory->getAnimal("小狗");animal_dog->voice();return 0;
}

建造者模式

建造者模式是⼀种创建型设计模式, 使⽤多个简单的对象⼀步⼀步构建成⼀个复杂的对象,能够将⼀ 个复杂的对象的构建与它的表⽰分离,提供⼀种创建对象的最佳⽅式。主要⽤于解决对象的构建过于 复杂的问题。

#include <iostream>
#include <memory>
#include<string>
/*抽象电脑类,里面有许多零部件需要安装*/
class Computer {public:using ptr = std::shared_ptr<Computer>;Computer() {}void setBoard(const std::string &board) {_board = board;}//一个电脑类得由各个下属的子类才能完成构造,比如说键盘void setDisplay(const std::string &display) {_display = display;}//得有显示器virtual void setOs() = 0;//得有操作系统,这是一个抽象类不同类型电脑得由不同操作系统。std::string toString() {std::string computer = "Computer:{\n";computer += "\tboard=" + _board + ",\n"; computer += "\tdisplay=" + _display + ",\n"; computer += "\tOs=" + _os + ",\n"; computer += "}\n";return computer;} protected://方便派生列访问呢std::string _board;//构造电脑需要的三个零部件std::string _display;std::string _os;
};/*派生出具体产品类*/
class MacBook : public Computer {public:using ptr = std::shared_ptr<MacBook>;MacBook() {}virtual void setOs() {_os = "Max Os X12";}
};/*抽象建造者类:将零件建造出来,包含创建一个产品对象的各个部件的抽象接口,建造者类是先将各个零部件生产出来,然后返回具体的对象*/
class Builder {public:using ptr = std::shared_ptr<Builder>;virtual void buildBoard(const std::string &board) = 0;virtual void buildDisplay(const std::string &display) = 0;virtual void buildOs() = 0;virtual Computer::ptr build() = 0;
};/*具体产品的具体建造者类:实现抽象接口,构建和组装各个部件*/
class MackBookBuilder : public Builder {public:using ptr = std::shared_ptr<MackBookBuilder>;MackBookBuilder(): _computer(new MacBook()) {}virtual void buildBoard(const std::string &board) {_computer->setBoard(board);}virtual void buildDisplay(const std::string &display) {_computer->setDisplay(display);}virtual void buildOs() {_computer->setOs();}virtual Computer::ptr build() {return _computer;}private:Computer::ptr _computer;
};/*由于零部件的构造还会有顺序要求,所以这里采用指挥者类,提供给调用者使用,通过指挥者来获取产品*/
class Director {public:Director(Builder* builder):_builder(builder){}//指挥者指挥的是一个Builder对象void construct(const std::string &board, const std::string &display) //建造对象{_builder->buildBoard(board);_builder->buildDisplay(display);_builder->buildOs();}private:Builder::ptr _builder;
};int main()
{Builder *buidler = new MackBookBuilder();//MackBookBuilder建造者建造mac电脑,工人建造没有顺序之分std::unique_ptr<Director> pd(new Director(buidler));//pd指挥建造者如何建造,先做什么后做什么。pd->construct("英特尔主板", "LG显示器");Computer::ptr computer = buidler->build();std::cout << computer->toString();return 0;
}

 代理模式

代理模式指代理控制对其他对象的访问, 也就是代理对象控制对原对象的引⽤,完成原对象基础之上的一些额外功能。

/*房东要把⼀个房⼦通过中介租出,而不是从房东手上租房*/
#include <iostream>
#include <string>
class RentHouse//租房类
{
public:virtual void rentHouse() = 0;
};
/*房东类:将房⼦租出去*/
class Landlord : public RentHouse//房东类
{
public:void rentHouse(){std::cout << "将房⼦租出去\n";}
};
/*中介代理类:代理了房东的类,对租房⼦进⾏功能加强,实现租房以外的其他功能*/
class Intermediary : public RentHouse
{
public:void rentHouse(){std::cout << "发布招租启⽰\n";std::cout << "带⼈看房\n";_landlord.rentHouse();std::cout << "负责租后维修\n";}
private:Landlord _landlord;
};
int main()
{Intermediary intermediary;intermediary.rentHouse();return 0;
}

 项目框架

日志系统:
作用:将一 条消息, 进行格式化称为指定格式的字符串后,写入到指定位置
1.日志要写入指定位置(标准输出,指定文件,滚动文件....),日志系统需要支持将日志消息落地到不同的位置---多落地方向
2.日志写入指定位置,支持不同的写入方式(同步,异步):
同步:业务线程自己负责日志的写入(流程简单,但是有可能会因为阻塞导致效率降低)
异步:业务线程将日志放入缓冲区内存,让其他异步线程负责将日志写入指定位置
3.日志输出以日志器为单位,支持多日志器(不同的项目组有不同的输出策略)、日志器的管理
模块划分:
日志等级模块:枚举出日志分为多少个等级---对不同的日志有不同等级标记- -以便于控制输出
日志消息模块:封装-条日志所需的各种要素 (时间,线程ID,文件名,行号,日志等级,消息主体.....)
消息格式化模块:按照指定的格式,对于日志消息关键要素进行组织,最终得到一个指定格式的字符串
 

这篇关于日志系统前置知识的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138753

相关文章

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识