地平线Sparse4D论文解析(含论文原文)

2024-09-05 09:20

本文主要是介绍地平线Sparse4D论文解析(含论文原文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 摘要

在自动驾驶感知系统中,3D 检测和跟踪是两个基本任务。本文深入研究了这一领域,并在 Sparse4D 框架的基础上进行了扩展。我们引入了两个辅助训练任务(时间实例去噪和质量估计),并提出了解耦注意力机制,以进行结构性改进,从而显著提升了检测性能。此外,我们通过在推理过程中分配实例 ID 的简单方法,将检测器扩展为跟踪器,进一步突出基于查询的算法的优势。在 nuScenes 基准测试上的广泛实验验证了所提出改进的有效性。以 ResNet50 作为骨干网络,我们在 mAP、NDS 和 AMOTA 上分别提升了 3.0%、2.2% 和 7.6%,达到了 46.9%、56.1% 和 49.0%。我们的最佳模型在 nuScenes 测试集上取得了 71.9% 的 NDS 和 67.7% 的 AMOTA。
代码将发布在 github工程链接。
论文免费下载链接

1. 前言

在时序多视角感知研究领域,基于稀疏的算法取得了显著进展 ,其感知性能已达到与基于密集 BEV 的算法相当的水平,同时提供了几个优势:
1) 自由视角转换。这些稀疏方法无需将图像空间转换为 3D 向量空间。
2) 检测头的计算负载恒定,与感知距离和图像分辨率无关。
3) 更容易通过端到端的方式实现下游任务的集成。

在本文研究中,我们选择了基于稀疏的算法 Sparse4Dv2 作为我们改进的基准。该算法的整体结构如图 1 所示。图像编码器将多视角图像转换为多尺度特征图,而解码器模块则利用这些图像特征来优化实例并生成感知结果。
图1Sparse4D 框架-多视角视频作为输入并输出所有帧的感知结果
首先,我们观察到与基于密集的方法相比,基于稀疏的方法在收敛上面临更大的挑战,最终影响了它们的最终性能。这一问题在二维检测领域已得到充分研究,主要归因于一对一的正样本匹配。这种匹配方式在训练的初期阶段不稳定,并且与一对多匹配相比,正样本的数量也较少,从而降低了解码器训练的效率。此外,Sparse4D 采用了稀疏特征采样,而不是全局交叉注意力,这进一步阻碍了编码器的收敛,因为正样本稀少。在 Sparse4Dv2 中,引入了密集的深度监督,以部分缓解图像编码器面临的这些收敛问题。本文主要旨在通过关注解码器训练的稳定性来提高模型性能。我们将去噪任务作为辅助监督,并将去噪技术从二维单帧检测扩展到三维时间序列检测。这不仅确保了稳定的正样本匹配,还显著增加了正样本的数量。此外,我们引入了质量估计任务作为辅助监督,这使得输出的置信度评分更加合理,改进了检测结果排名的准确性,并导致更高的评估指标。

此外,我们对 Sparse4D 中的实例自注意力和时间交叉注意力模块进行了结构增强,引入了一种解耦注意力机制,旨在减少计算注意力权重过程中特征干扰。当锚点嵌入和实例特征作为注意力计算的输入时,结果注意力权重中存在异常值。这未能准确反映目标特征之间的相互关联,导致无法聚合正确的特征。通过将加法替换为拼接,我们显著减轻了这一错误现象的发生。这一改进与 Conditional DETR 有相似之处。然而,关键的不同在于我们强调查询之间的注意力,而不是 Conditional DETR 关注查询和图像特征之间的交叉注意力。此外,我们的方法涉及一种不同的编码方法。
最后,为了提升感知系统的端到端能力,我们探索了将3D多目标跟踪任务集成到Sparse4D框架中,从而直接输出目标运动轨迹。与基于检测的跟踪方法不同,我们消除了对数据关联和滤波的需求,将所有跟踪功能整合到检测器中。此外,与现有的联合检测和跟踪方法不同,我们的跟踪器不需要修改训练过程或损失函数。它无需提供真实的ID标注,却能实现预定义的实例到跟踪的回归。我们的跟踪实现最大限度地整合了检测器和跟踪器,不需要修改检测器的训练过程,也无需额外的微调。我们的贡献可以总结如下:

  1. 我们提出了Sparse4D-v3,一个强大的3D感知框架,包含三种有效的策略:时间实例去噪、质量估计和解耦注意力。
  2. 我们将Sparse4D扩展为一个端到端的跟踪模型。
  3. 我们在nuScenes上展示了我们改进的有效性,在检测和跟踪任务中实现了最先进的性能。

这篇关于地平线Sparse4D论文解析(含论文原文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138561

相关文章

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象