机器学习:opencv图像识别--图片运算、边界、阈值处理、平滑处理

本文主要是介绍机器学习:opencv图像识别--图片运算、边界、阈值处理、平滑处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、图片运算

1.加法

1.+

2.add

3.加权相加

2.减法

二、图片边界

三、图像阈值处理

四、图像平滑处理

1.生成椒盐噪声

2.滤波器

1.均值滤波

2.方框滤波

3.高斯滤波

4.中值滤波


一、图片运算

1.加法

1.+

  • 直接将图片上每个像素点的值加上给定值或者两张图片的值相加
  • 相加之后超过255的,对256进行取模
import cv2
"""---------------图像运算--------------------"""
# +运算
# +号
# 相加之后超过255的,对256进行取模
a = cv2.imread('suda.jpg')
b = cv2.imread('zrn.jpg')
c = a + 60  # 将a矩阵各值都加上60 超过255的,对256进行取模
cv2.imshow('yuan', a)
cv2.imshow('pic', c)
cv2.waitKey(0)# 两张图片选取部分进行叠加
c = a[50:400, 50:400] + b[50:400, 50:400]  
cv2.imshow('a+b', c)
cv2.waitKey(0)

输出:

  • 左边是原图,右边是加上60的结果

  • 这是两张图片相加的结果

 

2.add

  • 将两张图片相加,使用的图片尺寸需要一样大
  • 相加之后值超过255的,变成255
# add   cv2.add()
# 相加之后超过255的 变成255
a = cv2.imread('suda.jpg')
b = cv2.imread('zrn.jpg')
a = cv2.resize(a, (400, 400))
b = cv2.resize(b, (400, 400))
c = cv2.add(a, b)
cv2.imshow('a+b', c)
cv2.waitKey(0)

输出:

 

3.加权相加

  • y = x1*α + x2*β + γ
  • 赋予图片1图片2不同的权重再进行相加
  • 最后加上偏移量,用来提高图像亮度,为0也行
# 加权运算
# y = x1*α + x2*β + γ
a = cv2.imread('suda.jpg')
b = cv2.imread('zrn.jpg')
a = cv2.resize(a, (400, 400))
b = cv2.resize(b, (400, 400))
c = cv2.addWeighted(a, 0.3, b, 0.7, 10)  # 10:图像的亮度值 ,将添加到加权和上
cv2.imshow("we", c)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

有种重影的感觉

 

2.减法

  • 将两张图片相加,使用的图片尺寸需要一样大
  • 相减之后的值小于0的,变成0
# 减法运算
# subtract  若有负值则变成0
a = cv2.imread('suda.jpg')
b = cv2.imread('zrn.jpg')
a = cv2.resize(a, (400, 400))
b = cv2.resize(b, (400, 400))
c = cv2.subtract(a, b)
cv2.imshow('sub', c)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

有种x光片的感觉

 

二、图片边界

  • 使用copyMakeBorder函数给图像加上边界
  • 给图片加上边界,不同的参数,边界效果就不一样
"""
cv2.copyMakeBorder()是openCV库中的一个函数,用于给图像添加额外的边界
border:边境
它有以下几个参数:
src:要扩充边界的原始图像。
top,bottom,left,right:相应方向上的边框宽度。
borderType:定义要添加边框的类型,它可以是以下的一种:
CV2.BORDER_CONSTANT:添加的边界框像素值为常数(需要额外再给定一个参数)。
CV2.BORDER_REFLECT:添加的边框像素将是边界元素的镜面反射,类似于gfedcba|abcdefgh|hgfedcba。(交界处也复制了)
CV2.BORDER_REFLECT_101 或 CV2.BORDER_DEFAULT:和上面类似,但是有一些细微的不同,类似于gfedcb|abcdefgh|gfedcba (交接处删除了)
CV2.BORDER_REPLICATE:使用最边界的像素值代替,类似于aaaaaaa|bcdefg|hhhhhhhh
CV2.BORDER_WRAP:左右两边替换,cdefgh|abcdefgh|abcdefg
"""import cv2img = cv2.imread('suda.jpg')
ys = cv2.resize(img, dsize=None, fx=0.5, fy=0.5)   # resize 对图片进行缩放
top, bottom, left, right = 50, 50, 50, 50constant = cv2.copyMakeBorder(ys, top, bottom, left, right, borderType=cv2.BORDER_CONSTANT, value=(195, 162, 34))  # 在图像四周添加一个常量颜色的边框
reflect = cv2.copyMakeBorder(ys, top, bottom, left, right, borderType=cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(ys, top, bottom, left, right, borderType=cv2.BORDER_REFLECT101)
replicate = cv2.copyMakeBorder(ys, top, bottom, left, right, borderType=cv2.BORDER_REPLICATE)
wrap = cv2.copyMakeBorder(ys, top, bottom, left, right, borderType=cv2.BORDER_WRAP)cv2.imshow('suda', ys)
cv2.waitKey(0)
cv2.imshow('CONSTANT', constant)
cv2.waitKey(0)
cv2.imshow('REFLECT', reflect)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow('REFLECT 101', reflect101)
cv2.waitKey(0)
cv2.imshow('REPLICATE', replicate)
cv2.waitKey(0)
cv2.imshow('WRAP', wrap)
cv2.waitKey(0)

输出:

原图                     边框             复制交界镜像反射

去交界镜像反射         边界延伸          左右交换

 

三、图像阈值处理

  • 使用threshold方法对图像进行阈值处理
  • 阈值处理一般都是对灰度图进行处理,因为灰度图是单通道图像,利于比较
import cv2
"""
dst = cv2.threshold(src, thresh, maxval, type, dst=None):
返回值: retval, dst
dst代阈值分割结果图像,与原始图像具有相同的大小和类型
src代表要进行阈值分割的图像,可以是多通道的,8位或32位浮点型数值
thresh代表要设定的阈值
maxval代表type参数位THRESH_BINARY或者THRESH_BINARY_INV类型时,需要设定的最大值
type代表闽值分割的类型,具体内容如下表所示:
#           选项             像素值>thresh             其他情况
# CV2.THRESH_BINARY             maxval                 0
# CV2.THRESH_BINARY_INV           0                  maxval
# CV2.THRESH_TRUNC              thresh              当前灰度值
# CV2.THRESH_TOZERO            当前灰度值                0
# CV2.THRESH_TOZERO_INV           0                 当前灰度值
"""img = cv2.imread('suda.jpg', cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (300, 300))
# img = cv2.imread('suda.jpg')ret, binary = cv2.threshold(img, 175, 255, cv2.THRESH_BINARY)
ret1, binaryinv = cv2.threshold(img, 175, 255, cv2.THRESH_BINARY_INV)
ret2, trunc = cv2.threshold(img, 175, 255, cv2.THRESH_TRUNC)
ret3, tozeo = cv2.threshold(img, 175, 255, cv2.THRESH_TOZERO)
ret4, tozeoinv = cv2.threshold(img, 175, 255, cv2.THRESH_TOZERO_INV)cv2.imshow('original', img)
cv2.waitKey(0)
cv2.imshow('binary', binary)
cv2.waitKey(0)
cv2.imshow('binaryinv', binaryinv)
cv2.waitKey(0)
cv2.imshow('trunc', trunc)
cv2.waitKey(0)
cv2.imshow('tozeo', tozeo)
cv2.waitKey(0)
cv2.imshow('tozeoinv', tozeoinv)
cv2.waitKey(0)

输出:

 

四、图像平滑处理

  • 去除杂质,减少噪声

1.生成椒盐噪声

import cv2
import numpy as npdef add_peppersalt_noise(image, n=10000):result = image.copy()  # 创建输入图像的副本 result,以避免直接修改原始图像h, w = image.shape[:2]for i in range(n):  # 生成n个椒盐噪声x = np.random.randint(1, h)y = np.random.randint(1, w)if np.random.randint(0, 2) == 0:result[x, y] = 0  # 随机使图像某个点变成黑色else:result[x, y] = 255  # 随机使图像某个点变成白色return resultimg = cv2.imread('suda.jpg')
img = cv2.resize(img, (300, 300))
cv2.imshow('suda', img)
cv2.waitKey(0)
noise = add_peppersalt_noise(img)
cv2.imshow('noise', noise)
cv2.waitKey(0)

输出:

左边原图,右边是生成椒盐噪声之后的图片

 

2.滤波器

1.均值滤波

  • cv2.blur
  • 通过计算每个像素周围邻域的均值来平滑图像。适用于去除小的随机噪声。
  • 卷积核就是选取像素周围的大小,3*3,5*5个像素当做周围邻域
"""
均值滤波 blur
dst = cv2.blur(src, ksize, dst=None, anchor=None, borderType=None):ksize: 模糊核的大小,通常是一个奇数(如 3, 5, 7 等)。它决定了模糊效果的强度和范围
"""
blur_1 = cv2.blur(noise, (3, 3))  # 卷积核为3,3  效果一般,清晰度一般
cv2.imshow('blur_1', blur_1)
cv2.waitKey(0)blur_2 = cv2.blur(noise, (5, 5))  # 卷积核为5,5  效果一般,清晰度一般
cv2.imshow('blur_2', blur_2)
cv2.waitKey(0)

输出:

效果一般

 

2.方框滤波

  • cv2.boxFilter
  • 是指用当前像素点周围nxn个像素值的和来代替当前像素值。
  • 所以一般比较亮
"""
方框滤波  
周围数字的和确定中间数值  大于255 使用255  这样图片容易泛白
dst=cv2.boxFilter (src,ddepth,ksize,anchor,normalize,borderType)
"""
boxFilter_1 = cv2.boxFilter(noise, -1, (3, 3), normalize=True)  # normalize=True时 效果跟均值滤波一致
cv2.imshow('box_1', boxFilter_1)
cv2.waitKey(0)
boxFilter_2 = cv2.boxFilter(noise, -1, (3, 3), normalize=False)
cv2.imshow('box_2', boxFilter_2)
cv2.waitKey(0)

输出:

亮闪闪

 

3.高斯滤波

  • cv2.GaussianBlur
  • 使用高斯函数对像素进行加权平均。能有效减少高斯噪声,并平滑图像。
"""
高斯滤波 
加权平均 
dst = cv2.GaussianBlur(src,ksize,sigmax,sigmay,dst)
"""
gs = cv2.GaussianBlur(noise, (3, 3), 1)  # sigmaX为1 标准差为1 标准正态分布
cv2.imshow('gaussianblur', gs)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

感觉好像没什么用

 

4.中值滤波

  • cv2.medianBlur
  • 取邻域像素的中值代替中心像素。有效去除椒盐噪声,同时保留边缘信息。
"""
中值滤波
取周围像素值,从大到小排列,取中值
dst = cv2.medianBlur(src,ksize,dst)中值滤波
"""
med = cv2.medianBlur(noise, 5)
cv2.imshow('med', med)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

有种主体如奶油般化开的感觉

这篇关于机器学习:opencv图像识别--图片运算、边界、阈值处理、平滑处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137597

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

使用Python实现图片和base64转换工具

《使用Python实现图片和base64转换工具》这篇文章主要为大家详细介绍了如何使用Python中的base64模块编写一个工具,可以实现图片和Base64编码之间的转换,感兴趣的小伙伴可以了解下... 简介使用python的base64模块来实现图片和Base64编码之间的转换。可以将图片转换为Bas

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

css实现图片旋转功能

《css实现图片旋转功能》:本文主要介绍了四种CSS变换效果:图片旋转90度、水平翻转、垂直翻转,并附带了相应的代码示例,详细内容请阅读本文,希望能对你有所帮助... 一 css实现图片旋转90度.icon{ -moz-transform:rotate(-90deg); -webkit-transfo

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结