【动态规划专栏】专题一总结

2024-09-05 01:20

本文主要是介绍【动态规划专栏】专题一总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。

💓博主csdn个人主页:小小unicorn
⏩专栏分类:动态规划专栏
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

专题一

  • 第 N 个泰波那契数
  • 三步问题
  • 最小花费爬楼梯
  • 解码方法:
    • 3.初始化
    • 4.填表顺序
    • 5.返回值
  • 斐波那契数
  • 思维导图:

在专题一中,我们重点学习了动态规划的第一种类型:斐波那契模型,在程序中我们用四道题进行了练习与巩固。

第 N 个泰波那契数

来源:第 N 个泰波那契数

在第一题中:发现他跟我们的斐波那契数列其实是很相似的,在解决本题中,我们首先对问题进行了变形:
在这里插入图片描述
我们通过变形,得到了一个递推关系式,第四个数是我们对应前三个数的和。为解决此问题呢,我们通过举例子:引出了dp表的概念
在这里插入图片描述
dp表其实就是一个一维或者二维数组,而我们要做就是将dp表里面的值填满,而其中dp表里面的值就是我们要的答案。
动态规划基本上分为五步:

  • 1.状态表示
  • 2.状态转移方程
  • 3.初始化
  • 4.填表顺序
  • 5.返回值

其中状态转移方程由状态表示推出,而3.4.5步则为处理细节问题。

在第一题中,我们的状态表示为:

dp[i]:表示第i个泰波那契数

根据递推式,我们的状态转移方程为;

dp[i]=dp[i-3]+dp[i-2]+dp[i-1]

这道题其实基本上到这就已经结束了,最后不要忘了初始化以及边界处理即可。

代码实现:

class Solution 
{
public:int tribonacci(int n) {//创建dp表vector<int> dp(n+1);//处理边界if(n==0)return 0;if(n==1||n==2)return 1;//初始化dp[0]=0;dp[1]=dp[2]=1;//填表for(int i=3;i<=n;i++){dp[i]=dp[i-1]+dp[i-2]+dp[i-3];}return dp[n];}
};

三步问题

来源:三步问题

这道题很有意思,我们分析题目:举几个例子:
在这里插入图片描述
规律还是很好发现的,所以状态表示直接就是:

dp[i]:表示到达i位置时,有多少种方法

在分析状态转移方程时,我们要以i位置的状态,来划分问题:
在这里插入图片描述
到达iu位置的时候,我们要观察,他可以如何到达i位置,可以从i-1位置,也可以从i-2位置过来,还可以从i-3位置过来。

因此状态转移方程:

dp[i]=dp[i-3]+dp[i-2]+dp[i-1]

最后我们分析一下边界情况,分别在3,2,1,0位置取到。

代码实现:

class Solution 
{
public:int waysToStep(int n) {const int MOD=1e9+7;//创建dp表vector<int> dp(n+1);//处理边界条件:if(n==1)return 1;if(n==2)return 2;if(n==3)return 4;//初始化dp[0]=0;dp[1]=1;dp[2]=2;dp[3]=4;for(int i=4;i<=n;i++){dp[i]=((dp[i-3]+dp[i-2])%MOD+dp[i-1])%MOD;}return dp[n];}
};

最小花费爬楼梯

来源:最小花费爬楼梯

本题要小心一点的是:
楼顶是在整个数组外面而不是数组的最后一个位置。
每次爬楼梯只能爬一层或者两层。

本题在确定状态表示,我们还是根据经验,不过这道题当时咱们用了两种办法:

1.以i位置为结尾
2.以i位置为开始

以i位置为结尾:
状态表示:

dp[i]表示:以i位置为结尾时,的最小花费

状态转移方程:
首先,到达i位置有两种情况:
在这里插入图片描述
我们根据最近的一步来划分问题:
在这里插入图片描述
因此,状态转移方程:

dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);

边界情况在0位置和1位置。

第二种方法这里就不再解释了。

代码实现:

class Solution 
{
public:int minCostClimbingStairs(vector<int>& cost) {//创建dp表int n=cost.size();vector<int> dp(n+1);//初始化dp[0]=dp[1]=0;//填表for(int i=2;i<=n;i++){dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[n];        }
};

解码方法:

来源:解码方法

对于本题而言就是:

dp[i]表示:以i位置为结尾时,解码方法的总数

在推方程之前,我们先画一下解码的情况:
在这里插入图片描述
分为单独解码和与前一个位置一起解码两种情况:
在这里插入图片描述
而单独解码和一起解码又要分为两种情况,成功和失败。
为什么会失败呢?
举个例子:
在这里插入图片描述
2和5可以一起解码,也可以分开解码,但到0位置时,就会解码错误,自己单独不能解码,要是与后面的6结合,
在这里插入图片描述
会出现之前说的前导0情况,也会解码错误。

因此,本题的状态转移方程为:

dp[i] = dp[i-1]+ dp[i-2]

3.初始化

本题初始化要在下标为0位置与下标为1位置进行初始化:
在这里插入图片描述

  dp[0]=s[0]!='0';//处理边界条件:if(n==1)return dp[0];if(s[0]!='0'&&s[1]!='0')dp[1]+=1;//前两个位置所表示的数:int t=(s[0]-'0')*10+s[1]-'0';if(t>=10&&t<=26)dp[1]+=1;

4.填表顺序

根据状态转移方程,我们计算dp[i]位置的值需要i-1与i-2位置的值,因此我们的填表顺序为:从左往右

5.返回值

我们要解码到最后一个位置,因此:返回dp[n-1]

代码实现:

class Solution 
{
public:int numDecodings(string s) {// 1.创建dp表// 2.初始化// 3.填表// 4.返回值int n=s.size();vector<int> dp(n);dp[0]=s[0]!='0';//处理边界条件:if(n==1)return dp[0];if(s[0]!='0' && s[1]!='0')dp[1]+=1;//前两个位置所表示的数:int t=(s[0]-'0')*10+s[1]-'0';if(t>=10&&t<=26)dp[1]+=1;for(int i=2;i<n;i++){//处理单独编码:if(s[i]!='0')dp[i]+=dp[i-1];//第二种情况对应的数:int t=(s[i-1]-'0')*10+s[i]-'0';if(t>=10&&t<=26)dp[i]+=dp[i-2];}return dp[n-1];}
};

斐波那契数

来源:斐波那契数

本题很简单,递推式题目都给了,直接上代码:

class Solution 
{
public:int fib(int n) {//创建dp表vector<int> dp(n+1);//处理边界条件:if(n==0)return 0;if(n==1)return 1;//初始化dp[0]=0;dp[1]=1;//填表for(int i=2;i<=n;i++){dp[i]=dp[i-1]+dp[i-2];}return dp[n];}
};

思维导图:

在这里插入图片描述
第一章所有代码以及解题思路画图版图片,以及思维导图都已上传至资源中。

这篇关于【动态规划专栏】专题一总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137565

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式