激活函数 Sigmod 及其导数

2024-09-05 00:12
文章标签 函数 导数 激活 sigmod

本文主要是介绍激活函数 Sigmod 及其导数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. Sigmod 函数
  • 2. 取值
  • 3. 图像
  • 4. 导数

1. Sigmod 函数

Sigmod 函数是神经网络中最常用的激活函数之一,其形式如下:
sigmod ( x ) = f ( x ) = 1 1 + e − x . \text{sigmod}(x) = f(x) = \frac{1}{1 + e^{-x}}. sigmod(x)=f(x)=1+ex1.

2. 取值

分析:
(1)当 x = 0 x=0 x=0 时,
f ( x ) = f ( 0 ) = 1 1 + e − 0 = 1 2 . f(x) = f(0) = \frac{1}{1+e^{-0}} = \frac{1}{2}. f(x)=f(0)=1+e01=21.
(2)当 x → + ∞ x \to +\infty x+ 时, e − x → 0 e^{-x} \to 0 ex0,由此 f ( x ) → 1 f(x) \to 1 f(x)1
(3)当 x → − ∞ x \to -\infty x 时, e − x → + ∞ e^{-x} \to +\infty ex+,由此 f ( x ) → 0 f(x) \to 0 f(x)0

由此,sigmod 函数的取值范围是 [ 0 , 1 ] [0, 1] [0,1],且单调递增。

3. 图像

我们用 Python 画一画它的图像出来:
在这里插入图片描述
实现的 Python 代码如下:

import numpy as np
from matplotlib import pyplot as pltx = np.linspace(-100, 100, 10000)
y = 1 / (1 + np.exp(-x))
plt.plot(x, y, linestyle='-', color='blue', linewidth=6)
plt.show()

4. 导数

f ′ ( x ) = ( 1 1 + e − x ) ′ = − 1 ( 1 + e − x ) 2 ( 1 + e − x ) ′ = − 1 ( 1 + e − x ) 2 e − x ( − x ) ′ = − 1 ( 1 + e − x ) 2 e − x ( − 1 ) = e − x ( 1 + e − x ) 2 = ( 1 − 1 ) + e − x ( 1 + e − x ) 2 = ( 1 + e − x ) − 1 ( 1 + e − x ) 2 = 1 1 + e − x − 1 ( 1 + e − x ) 2 = f ( x ) − f 2 ( x ) = f ( x ) ( 1 − f ( x ) ) . \begin{aligned} f'(x) &= \left(\frac{1}{1+e^{-x}} \right)' \\ &= - \frac{1}{\left(1+e^{-x}\right)^2} \left(1+e^{-x} \right)' \\ &= - \frac{1}{\left(1+e^{-x}\right)^2} e^{-x} (-x)' \\ &= - \frac{1}{\left(1+e^{-x}\right)^2} e^{-x} (-1) \\ &= \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \frac{(1-1) + e^{-x}}{\left(1+e^{-x}\right)^2} = \frac{(1 + e^{-x}) -1}{\left(1+e^{-x}\right)^2} \\ &= \frac{1}{1 + e^{-x}} - \frac{1}{\left(1 + e^{-x}\right)^2} \\ &= f(x) - f^2(x) \\ &= f(x) \left(1-f(x) \right). \end{aligned} f(x)=(1+ex1)=(1+ex)21(1+ex)=(1+ex)21ex(x)=(1+ex)21ex(1)=(1+ex)2ex=(1+ex)2(11)+ex=(1+ex)2(1+ex)1=1+ex1(1+ex)21=f(x)f2(x)=f(x)(1f(x)).

即: f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f'(x) = f(x) \left(1-f(x) \right) f(x)=f(x)(1f(x))

这篇关于激活函数 Sigmod 及其导数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137433

相关文章

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详