短时相关+FFT捕获方法的MATLAB仿真

2024-09-04 22:36

本文主要是介绍短时相关+FFT捕获方法的MATLAB仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

短时相关+FFT捕获方法的MATLAB仿真

  • 前言
  • 短时相关+FFT捕获相关原理
    • 1、频偏引起的相关损失
    • 2、扇贝损失
  • MATLAB程序
  • 获取完整程序


前言

对于算法类的工程,FPGA设计,仿真先行,再没搞清楚整个信号处理原理和流程之前,切莫盲目开始FPGA RTL。对于导航接收机而言,接收机的第一步就在于能够捕获到信号,才能进行后面的跟踪、解算等等。笔者所做的《从零开始研发GPS接收机》的工作中,使用的方法就是这种短时相关+FFT的捕获方法。
从零开始研发GPS接收机》记录了笔者实现一个硬件接收机的全过程,可通过公众号找到。

短时相关+FFT捕获相关原理

短时相关+FFT捕获(或叫做匹配滤波+FFT,PMF+FFT)是一种比较适合于硬件实现的方法。大致的实现方式如下:中频信号与本地载波相乘得到I、Q两路信号。I、Q两路信号分别进入N (,L为伪码长度)阶延迟线,与本地的N 位信号相关,可以得到N个相关值。各次相关输出存储在缓存中,M次运算后将形成一个维的矩阵,对该矩阵各列作M点FFT,当接收信号与本地信号相位差小于N 时即可完成对信号的捕获,当相位差大于N 时未能完成捕获,重新进入下一轮捕获。

在这里插入图片描述

1、频偏引起的相关损失

部分相关是一个低通滤波过程,随着多普勒频移的增大,对应的FFT输出值随之下降,叫做相关损失。随着多普勒频移的增大,相关损失引起FFT输出值下降,因而导致检测概率的下降。下图显示了不同相关器配置对短时相关+FFT结构的幅频响应的影响。X表示每段短时相关的点数,P为段数,N表示对P点数据做N点FFT运算

在总相关时间一定的情况下,分段相关器的相关时长越长,做FFT运算的点数越少,则相应的相关损失也越厉害。
在这里插入图片描述

2、扇贝损失

在短时相关-FFT结构中,FFT运算存在扇贝损失,即当多普勒频移值位于FFT输出两点之间时,该频率对应的FFT输出亦会下降。FFT输出幅度周期性的下降就是由于FFT运算中相位补偿不完全引起的,这种周期性的幅度下降同样也会导致检测概率的下降。扇贝损失可以用补零法来改善。

补零前的幅频响应:
在这里插入图片描述
补零后的幅频响应:
在这里插入图片描述
劣势:
1、如果频率落在两个分辨的频点中间,峰值会有所下降(扇贝损失)
2、如果频偏离中心频点较远,则峰值会下降(频偏损失)
优势:
1、对于电文跳变不敏感,不会因为电文翻转存在相关损失。
2、实现比较灵活,相关器个数可根据捕获速度要求配置

MATLAB程序

这里的matlab使用的是短时相关+FFT的方法。因为短时相关+FFT的原理比较简单,难点在于RTL设计和时序,读者在matlab中弄明白运算原理之后,可以试着参考下面链接中提到的一些设计思路进行设计。

从零开始研发GPS接收机连载——6、捕获模块设计与验证
这里使用下面文章中生成的信源来进行捕获和载噪比估计:
GPS的信号强度以及matlab信号模拟
matlab程序如下:

close all;
clear all;
clc;
format long g;%参数
SAMPLECLK   = 16.369e6;   %采样时钟
T = 0.001;   %相关时长
SAMPLE1MS   = SAMPLECLK*T; 
L1CODEFERQ  = 1.023e6;
L1CARRFERQ  = 3.996e6;  %中频
L1CODELEN   = 1023;     %一周期码片个数%y.mat来自于《GPS的信号强度以及matlab信号模拟》中的matlab
%此处doppler = 1000Hz
y = load('y.mat').y; %包含了PRNNUM = 1的卫星数据
y = y(CodePhase : end);%以下为付费内容

首先还是得到这张二维图:
在这里插入图片描述
自动算出码相位和多普勒以及CNR。
可以看到,由于频率分辨率的限制,只能输出1000Hz最接近的一个频点,即937.5Hz,那么载波频率的捕获误差就是62.5Hz。
在这里插入图片描述

获取完整程序

见公众号

这篇关于短时相关+FFT捕获方法的MATLAB仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137222

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关