GEE数据集:全球地下水生态系统 (GDEs)数据集(30m分辨率)

2024-09-04 16:04

本文主要是介绍GEE数据集:全球地下水生态系统 (GDEs)数据集(30m分辨率),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

地下水的全球生态系统 (GDEs)

简介

代码

代码链接

APP链接

结果

引用

许可

网址推荐

0代码在线构建地图应用

机器学习


地下水的全球生态系统 (GDEs)

简介

地下水是最广泛的液态淡水来源,但它在支持多样化生态系统方面的关键作用却往往不被人们所认识。 在许多地区,依赖地下水的生态系统(GDEs)的位置和范围在很大程度上仍不为人所知,导致保护措施不足。 该数据集提供了一张高分辨率(约 30 米)的 GDEs 地图,揭示了全球三分之一以上的旱地(包括主要的生物多样性热点地区)存在 GDEs 的情况。 在地下水枯竭率较低的牧业区,全球生态系分布更为广泛和连续,这表明由于不可持续的水资源和土地利用方式,许多全球生态系分布很可能已经消失。 在绘制的全球生态系分布图中,约 53% 位于地下水呈下降趋势的地区,这表明迫切需要采取保护措施。 尽管它们非常重要,但只有 21% 的全球地下水资源评估区位于保护区或具有可持续地下水管理政策的地区内,这凸显了保护工作中的巨大差距。 此外,该数据集还探讨了大萨赫勒地区的全球地下水资源与文化、社会经济因素之间的联系,强调了它们在支持生物多样性和农村生计方面的作用。 对于政策制定者、保护主义者和利益相关者来说,全球海洋生态系统地图是一个重要的工具,可帮助他们在地方、区域和国际层面确定保护这些重要生态系统的优先次序并制定相关战略。

代码

var imageCollection = ee.ImageCollection("projects/codefornature/assets/GlobalGDEMap_v6_TNC");
print(imageCollection)var ic_class = imageCollection.select('gde_class');
var ic_prob = imageCollection.select('gde_prob');var GDEmap = ee.Image(ic_class.mosaic());
var GDEprob = ee.Image(ic_prob.mosaic());var dataset = ee.ImageCollection("ESA/WorldCover/v100").first();
var land = dataset.neq(80).updateMask(dataset.neq(80));///// rename "land" band to match "GDEmap" band names
// set land raster = 0
var land_renameBand = land.remap([1], [0], 0, 'Map').select(['remapped']).rename(['gde_class']);// mask out non-analyzed areas from GDE layer
var mask = GDEmap.gt(0)
var GDEmasked = GDEmap.updateMask(mask) // GDE and no GDE; excludes areas not analyzed
var GDEprob_masked = GDEprob.updateMask(mask) // probability of GDEs; excludes areas not analyzed
var GDEprob_80 = GDEprob_masked.gte(80) // high probability of GDEs; excludes areas not analyzed
// Use the image as its own mask to hide zero values
var GDEprob_80_masked = GDEprob_80.mask(GDEprob_80);// composite "land" and "GDEmap" images (taking the maximum value)
var GDEmap_land_composite = ee.ImageCollection.fromImages([GDEmasked, land_renameBand]).max(); // composite layer (GDE, no GDE, land area not analyzed)// add composite image to map
// 0 = not analyzed
// 1 = GDE
// 2 = no GDE
//  Palette with the colors
//var palette_colors =['#c6c6c6','#00cc00','white'];
var palette_colors = ['#c6c6c6', '#018571', '#a6611a'];
var palette_colors_prob = ['#a6611a', '#dfc27d', '#f5f5f5', '#80cdc1', '#018571'];var classProbVisualization = {min: 0,max: 100,palette: palette_colors_prob
};var vizParams = {palette: ['006400'] // dark green
};// name of the legend
var names = ['Not Analyzed', 'Likely GDE', 'Not GDE'];//Map.addLayer(GDEprob_80_masked, vizParams, 'High probability GDEs');
Map.setCenter(-28, 33, 3)// Add in the download grid
var finalGrid = ee.FeatureCollection('projects/codefornature/assets/global_gde_tiles_URL');
print(finalGrid)// Define the style for the grid layer
var gridStyle = {color: 'white',fillColor: '#FFFFFF80', // Transparent white fill (50% opacity)width: 2
};// Add the styled grid layer to the map
Map.addLayer(GDEmap_land_composite, {min: 0,max: 2,palette: palette_colors,opacity: .8
}, 'Groundwater Dependent Ecosystems')
Map.addLayer(GDEprob_masked, classProbVisualization, 'GDE Certainty', 0);
Map.addLayer(finalGrid.style(gridStyle), {}, 'Download Tiles', 0);// Global variable to store the pop-up
var popup;// Function to create a pop-up with the URL
var createPopup = function(feature) {var url = feature.get('URL');url.evaluate(function(clientUrl) { // Convert the URL to a client-side stringif (popup) {Map.remove(popup); // Remove the existing pop-up if it exists}popup = ui.Label({value: 'Download the GDE data for this tile',style: {fontSize: '12px',margin: '1px 8px 1px 8px',textAlign: 'left',color: 'blue',textDecoration: 'underline'},targetUrl: clientUrl});Map.add(popup);});
};// Add a click event to show the pop-up
Map.onClick(function(coords) {var point = ee.Geometry.Point([coords.lon, coords.lat]);var clickedFeature = finalGrid.filterBounds(point).first();clickedFeature.evalua

这篇关于GEE数据集:全球地下水生态系统 (GDEs)数据集(30m分辨率)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136402

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal