numpy、scipy、pandas、matplotlib了解

2024-09-04 07:38

本文主要是介绍numpy、scipy、pandas、matplotlib了解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.numpy——基础,以矩阵为基础的数学计算模块,纯数学
存储和处理大型矩阵。
这个是很基础的扩展,其余的扩展都是以此为基础。
快速学习入口 https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

2.pandas——数据分析
基于NumPy 的一种工具,为了解决数据分析任务而创建的。
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
最具有统计意味的工具包,某些方面优于R软件。
数据结构有一维的Series,二维的DataFrame(类似于Excel或者SQL中的表,如果深入学习,会发现Pandas和SQL相似的地方很多,例如merge函数),
三维的Panel
(Pan(el) + da(ta) + s,知道名字的由来了吧)。
学习pandas要掌握:
汇总和计算描述统计,处理缺失数据 ,层次化索引
清理、转换、合并、重塑、GroupBy技术
日期和时间数据类型及工具(日期处理方便地飞起)。
http://pandas.pydata.org/pandas-docs/stable/10min.html

3.matplotlib——绘图,不推荐使用,不如用seaborn
python中最著名的绘图系统.很多其他的绘图例如seaborn(针对pandas绘图而来)也是由其封装而成。
这个绘图系统操作起来很复杂,和R的ggplot,lattice绘图相比显得望而却步,这也是为什么我个人不丢弃R的原因.
但是matplotlib的复杂给其带来了很强的定制性。其具有面向对象的方式及Pyplot的经典高层封装。
需要掌握的是:
散点图,折线图,条形图,直方图,饼状图,箱形图的绘制。
绘图的三大系统:pyplot,pylab(不推荐),面向对象
坐标轴的调整,添加文字注释,区域填充,及特殊图形patches的使用
金融的同学注意的是:可以直接调用Yahoo财经数据绘图.
http://matplotlib.org/users/pyplot_tutorial.html

4.scipy——数值计算库
在NumPy库的基础上增加了众多的数学、科学以及工程计算中常用的库函数。
方便、易于使用、专为科学和工程设计的Python工具包.
它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。

5.Python numpy,scipy,pandas这些库的区别
Numpy是以矩阵为基础的数学计算模块,纯数学。
Scipy基于Numpy,科学计算库,有一些高阶抽象和物理模型。比方说做个傅立叶变换,这是纯数学的,用Numpy;做个滤波器,这属于信号处理模型了,在Scipy里找。
Pandas提供了一套名为DataFrame的数据结构,比较契合统计分析中的表结构,并且提供了计算接口,可用Numpy或其它方式进行计算。

这篇关于numpy、scipy、pandas、matplotlib了解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135403

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

速了解MySQL 数据库不同存储引擎

快速了解MySQL 数据库不同存储引擎 MySQL 提供了多种存储引擎,每种存储引擎都有其特定的特性和适用场景。了解这些存储引擎的特性,有助于在设计数据库时做出合理的选择。以下是 MySQL 中几种常用存储引擎的详细介绍。 1. InnoDB 特点: 事务支持:InnoDB 是一个支持 ACID(原子性、一致性、隔离性、持久性)事务的存储引擎。行级锁:使用行级锁来提高并发性,减少锁竞争

PHP: 深入了解一致性哈希

前言 随着memcache、redis以及其它一些内存K/V数据库的流行,一致性哈希也越来越被开发者所了解。因为这些内存K/V数据库大多不提供分布式支持(本文以redis为例),所以如果要提供多台redis server来提供服务的话,就需要解决如何将数据分散到redis server,并且在增减redis server时如何最大化的不令数据重新分布,这将是本文讨论的范畴。 取模算法 取模运

Weex入门教程之1,了解Weex

【资料合集】Weex Conf回顾集锦:讲义PDF+活动视频! PDF分享:链接:http://pan.baidu.com/s/1hr8RniG 密码:fa3j 官方教程:https://weex-project.io/cn/v-0.10/guide/index.html 用意 主要是介绍Weex,并未涉及开发方面,好让我们开始开发之前充分地了解Weex到底是个什么。 以下描述主要摘取于

matplotlib绘图中插入图片

在使用matplotlib下的pyplot绘图时,有时处于各种原因,需要采用类似贴图的方式,插入外部的图片,例如添加自己的logo,或者其他的图形水印等。 一开始,查找到的资料都是使用imshow,但是这会有带来几个问题,一个是图形的原点发生了变化,另外一个问题就是图形比例也产生了变化,当然最大的问题是图形占据了整个绘图区域,完全喧宾夺主了,与我们设想的只在绘图区域中占据很小的一块不相符。 经

【Python从入门到进阶】64、Pandas如何实现数据的Concat合并

接上篇《63.Pandas如何实现数据的Merge》 上一篇我们学习了Pandas如何实现数据的Merge,本篇我们来继续学习Pandas如何实现数据的Concat合并。 一、引言 在数据处理过程中,经常需要将多个数据集合并为一个统一的数据集,以便进行进一步的分析或建模。这种需求在多种场景下都非常常见,比如合并不同来源的数据集以获取更全面的信息、将时间序列数据按时间顺序拼接起来以观察长期趋势等